Perspective: A Resident's Role in Promoting Safe Machine-learning Tools in Sleep Medicine
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
Citation: Smith CM, Vendrame M. Perspective: a resident's role in promoting safe machine-learning tools in sleep medicine. . 2023;19(11):1985-1987.
References
1.
Le V, Kim D, Cho E, Jang H, Delos Reyes R, Kim H
. Real-Time Detection of Sleep Apnea Based on Breathing Sounds and Prediction Reinforcement Using Home Noises: Algorithm Development and Validation. J Med Internet Res. 2023; 25:e44818.
PMC: 9996414.
DOI: 10.2196/44818.
View
2.
Kelly J, Ben Messaoud R, Joyeux-Faure M, Terrail R, Tamisier R, Martinot J
. Diagnosis of Sleep Apnoea Using a Mandibular Monitor and Machine Learning Analysis: One-Night Agreement Compared to in-Home Polysomnography. Front Neurosci. 2022; 16:726880.
PMC: 8965001.
DOI: 10.3389/fnins.2022.726880.
View
3.
Bandyopadhyay A, Goldstein C
. Clinical applications of artificial intelligence in sleep medicine: a sleep clinician's perspective. Sleep Breath. 2022; 27(1):39-55.
PMC: 8904207.
DOI: 10.1007/s11325-022-02592-4.
View
4.
Vallat R, Walker M
. An open-source, high-performance tool for automated sleep staging. Elife. 2021; 10.
PMC: 8516415.
DOI: 10.7554/eLife.70092.
View
5.
Aiyer I, Shaik L, Sheta A, Surani S
. Review of Application of Machine Learning as a Screening Tool for Diagnosis of Obstructive Sleep Apnea. Medicina (Kaunas). 2022; 58(11).
PMC: 9696886.
DOI: 10.3390/medicina58111574.
View