» Articles » PMID: 37468502

Biodegradable Polyphosphoester Micelles Act As Both Background-free P Magnetic Resonance Imaging Agents and Drug Nanocarriers

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Jul 19
PMID 37468502
Authors
Affiliations
Soon will be listed here.
Abstract

In vivo monitoring of polymers is crucial for drug delivery and tissue regeneration. Magnetic resonance imaging (MRI) is a whole-body imaging technique, and heteronuclear MRI allows quantitative imaging. However, MRI agents can result in environmental pollution and organ accumulation. To address this, we introduce biocompatible and biodegradable polyphosphoesters, as MRI-traceable polymers using the P centers in the polymer backbone. We overcome challenges in P MRI, including background interference and low sensitivity, by modifying the molecular environment of P, assembling polymers into colloids, and tailoring the polymers' microstructure to adjust MRI-relaxation times. Specifically, gradient-type polyphosphonate-copolymers demonstrate improved MRI-relaxation times compared to homo- and block copolymers, making them suitable for imaging. We validate background-free imaging and biodegradation in vivo using Manduca sexta. Furthermore, encapsulating the potent drug PROTAC allows using these amphiphilic copolymers to simultaneously deliver drugs, enabling theranostics. This first report paves the way for polyphosphoesters as background-free MRI-traceable polymers for theranostic applications.

Citing Articles

The Environmental Impact of Medical Imaging Agents and the Roadmap to Sustainable Medical Imaging.

Pichler V, Martinho R, Temming L, Segers T, Wurm F, Koshkina O Adv Sci (Weinh). 2025; 12(9):e2404411.

PMID: 39905748 PMC: 11884531. DOI: 10.1002/advs.202404411.


Single-Step Synthesis of Highly Sensitive F MRI Tracers by Gradient Copolymerization-Induced Self-Assembly.

Panakkal V, Havlicek D, Pavlova E, Jirakova K, Jirak D, Sedlacek O Biomacromolecules. 2024; 25(12):7685-7694.

PMID: 39558644 PMC: 11632659. DOI: 10.1021/acs.biomac.4c00915.


MRI detection of free-contrast agent nanoparticles.

Garello F, Cavallari E, Capozza M, Ribodino M, Parolisi R, Buffo A Magn Reson Med. 2024; 93(2):761-774.

PMID: 39344270 PMC: 11604830. DOI: 10.1002/mrm.30292.


An enteric ultrastructural surface atlas of the model insect .

Windfelder A, Steinbart J, Graser L, Scherberich J, Krombach G, Vilcinskas A iScience. 2024; 27(4):109410.

PMID: 38558941 PMC: 10981077. DOI: 10.1016/j.isci.2024.109410.


Nanomaterial-Based Drug Delivery Systems for Pain Treatment and Relief: From the Delivery of a Single Drug to Co-Delivery of Multiple Therapeutics.

Xu Y, Dong X, Xu H, Jiao P, Zhao L, Su G Pharmaceutics. 2023; 15(9).

PMID: 37765278 PMC: 10537372. DOI: 10.3390/pharmaceutics15092309.


References
1.
Wijnen J, Scheenen T, Klomp D, Heerschap A . 31P magnetic resonance spectroscopic imaging with polarisation transfer of phosphomono- and diesters at 3 T in the human brain: relation with age and spatial differences. NMR Biomed. 2010; 23(8):968-76. DOI: 10.1002/nbm.1523. View

2.
Kislukhin A, Xu H, Adams S, Narsinh K, Tsien R, Ahrens E . Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging. Nat Mater. 2016; 15(6):662-8. PMC: 5053764. DOI: 10.1038/nmat4585. View

3.
Bekes M, Langley D, Crews C . PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022; 21(3):181-200. PMC: 8765495. DOI: 10.1038/s41573-021-00371-6. View

4.
Schottler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K . Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol. 2016; 11(4):372-7. DOI: 10.1038/nnano.2015.330. View

5.
Bertsch P, Diba M, Mooney D, Leeuwenburgh S . Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev. 2022; 123(2):834-873. PMC: 9881015. DOI: 10.1021/acs.chemrev.2c00179. View