GEO Data Mining Identifies Potential Immune-related Genes in Hypertrophic Scar and Verities in a Rabbit Model
Overview
Authors
Affiliations
Objective: Hypertrophic scar (HTS), the secondary major abnormal tissue after wound healing, is the most frequent and severe type of skin scar. Dysregulated immune response plays an important role in HTS formation. In this study, we identified the potential immune-related genes in HTS and explored their potential therapeutic significance.
Methods: We first screened out the potential immune-related genes in HTS microarrays via bioinformatics analysis using public datasets. We then constructed a rabbit model of ear scar to investigate the morphological features of HTS and verify the basic expression of potential immune-related genes in HTS tissue. Finally, we used AlphaFold to determine the protein homology between human and rabbit scar tissues.
Results: Bioinformatics analysis revealed 22 differentially expressed genes (DEGs) and a single differential infiltration of immune cells (naïve B cells) in HTS and normal tissues. Six of the DEGs were correlated with naïve B cell numerically. CCL2, PLXDC2 and FOXF2 were expressed in rabbit ear scar model. PLXDC2 and FOXF2 showed relatively high homology between human and rabbit scar tissues.
Conclusions: PLXDC2 and FOXF2, both closely related to immune cell infiltration and specifically expressed in HTS, represent potential therapeutic targets in HTS.