» Articles » PMID: 37454235

Identifying Oscillatory Brain Networks with Hidden Gaussian Graphical Spectral Models of MEEG

Abstract

Identifying the functional networks underpinning indirectly observed processes poses an inverse problem for neurosciences or other fields. A solution of such inverse problems estimates as a first step the activity emerging within functional networks from EEG or MEG data. These EEG or MEG estimates are a direct reflection of functional brain network activity with a temporal resolution that no other in vivo neuroimage may provide. A second step estimating functional connectivity from such activity pseudodata unveil the oscillatory brain networks that strongly correlate with all cognition and behavior. Simulations of such MEG or EEG inverse problem also reveal estimation errors of the functional connectivity determined by any of the state-of-the-art inverse solutions. We disclose a significant cause of estimation errors originating from misspecification of the functional network model incorporated into either inverse solution steps. We introduce the Bayesian identification of a Hidden Gaussian Graphical Spectral (HIGGS) model specifying such oscillatory brain networks model. In human EEG alpha rhythm simulations, the estimation errors measured as ROC performance do not surpass 2% in our HIGGS inverse solution and reach 20% in state-of-the-art methods. Macaque simultaneous EEG/ECoG recordings provide experimental confirmation for our results with 1/3 times larger congruence according to Riemannian distances than state-of-the-art methods.

Citing Articles

EEG functional connectivity as a Riemannian mediator: An application to malnutrition and cognition.

Lopez Naranjo C, Razzaq F, Li M, Wang Y, Bosch-Bayard J, Lindquist M Hum Brain Mapp. 2024; 45(7):e26698.

PMID: 38726908 PMC: 11082925. DOI: 10.1002/hbm.26698.


CiftiStorm pipeline: facilitating reproducible EEG/MEG source connectomics.

Areces-Gonzalez A, Paz-Linares D, Riaz U, Wang Y, Li M, Razzaq F Front Neurosci. 2024; 18:1237245.

PMID: 38680452 PMC: 11047451. DOI: 10.3389/fnins.2024.1237245.


Minimizing the distortions in electrophysiological source imaging of cortical oscillatory activity Spectral Structured Sparse Bayesian Learning.

Paz-Linares D, Gonzalez-Moreira E, Areces-Gonzalez A, Wang Y, Li M, Vega-Hernandez M Front Neurosci. 2023; 17:978527.

PMID: 37008210 PMC: 10050575. DOI: 10.3389/fnins.2023.978527.


Who's driving? The default mode network in healthy elderly individuals at risk of cognitive decline.

Gonzalez-Lopez M, Gonzalez-Moreira E, Areces-Gonzalez A, Paz-Linares D, Fernandez T Front Neurol. 2022; 13:1009574.

PMID: 36530633 PMC: 9749402. DOI: 10.3389/fneur.2022.1009574.

References
1.
Marinazzo D, Riera J, Marzetti L, Astolfi L, Yao D, Valdes Sosa P . Controversies in EEG Source Imaging and Connectivity: Modeling, Validation, Benchmarking. Brain Topogr. 2019; 32(4):527-529. DOI: 10.1007/s10548-019-00709-9. View

2.
Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-Barreto N . Multiple sparse priors for the M/EEG inverse problem. Neuroimage. 2007; 39(3):1104-20. DOI: 10.1016/j.neuroimage.2007.09.048. View

3.
Reid A, Headley D, Mill R, Sanchez-Romero R, Uddin L, Marinazzo D . Advancing functional connectivity research from association to causation. Nat Neurosci. 2019; 22(11):1751-1760. PMC: 7289187. DOI: 10.1038/s41593-019-0510-4. View

4.
Smith S, Vidaurre D, Beckmann C, Glasser M, Jenkinson M, Miller K . Functional connectomics from resting-state fMRI. Trends Cogn Sci. 2013; 17(12):666-82. PMC: 4004765. DOI: 10.1016/j.tics.2013.09.016. View

5.
Vidaurre D, Abeysuriya R, Becker R, Quinn A, Alfaro-Almagro F, Smith S . Discovering dynamic brain networks from big data in rest and task. Neuroimage. 2017; 180(Pt B):646-656. PMC: 6138951. DOI: 10.1016/j.neuroimage.2017.06.077. View