» Articles » PMID: 37451264

Interpreting the Retinal Neural Code for Natural Scenes: From Computations to Neurons

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2023 Jul 14
PMID 37451264
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding the circuit mechanisms of the visual code for natural scenes is a central goal of sensory neuroscience. We show that a three-layer network model predicts retinal natural scene responses with an accuracy nearing experimental limits. The model's internal structure is interpretable, as interneurons recorded separately and not modeled directly are highly correlated with model interneurons. Models fitted only to natural scenes reproduce a diverse set of phenomena related to motion encoding, adaptation, and predictive coding, establishing their ethological relevance to natural visual computation. A new approach decomposes the computations of model ganglion cells into the contributions of model interneurons, allowing automatic generation of new hypotheses for how interneurons with different spatiotemporal responses are combined to generate retinal computations, including predictive phenomena currently lacking an explanation. Our results demonstrate a unified and general approach to study the circuit mechanisms of ethological retinal computations under natural visual scenes.

Citing Articles

Orthogonal neural representations support perceptual judgments of natural stimuli.

Srinath R, Ni A, Marucci C, Cohen M, Brainard D Sci Rep. 2025; 15(1):5316.

PMID: 39939679 PMC: 11821992. DOI: 10.1038/s41598-025-88910-8.


Universality of representation in biological and artificial neural networks.

Hosseini E, Casto C, Zaslavsky N, Conwell C, Richardson M, Fedorenko E bioRxiv. 2025; .

PMID: 39764030 PMC: 11703180. DOI: 10.1101/2024.12.26.629294.


Stimulus-invariant aspects of the retinal code drive discriminability of natural scenes.

Hoshal B, Holmes C, Bojanek K, Salisbury J, Berry 2nd M, Marre O Proc Natl Acad Sci U S A. 2024; 121(52):e2313676121.

PMID: 39700141 PMC: 11670243. DOI: 10.1073/pnas.2313676121.


Plaid masking explained with input-dependent dendritic nonlinearities.

Bertalmio M, Duran Vizcaino A, Malo J, Wichmann F Sci Rep. 2024; 14(1):24856.

PMID: 39438555 PMC: 11496684. DOI: 10.1038/s41598-024-75471-5.


Adaptation of retinal discriminability to natural scenes.

Ding X, Lee D, Melander J, Ganguli S, Baccus S bioRxiv. 2024; .

PMID: 39386466 PMC: 11463383. DOI: 10.1101/2024.09.26.615305.


References
1.
Ding X, Lee D, Grant S, Stein H, McIntosh L, Maheswaranathan N . A mechanistically interpretable model of the retinal neural code for natural scenes with multiscale adaptive dynamics. Conf Rec Asilomar Conf Signals Syst Comput. 2023; 2021:287-291. PMC: 10680971. DOI: 10.1109/ieeeconf53345.2021.9723187. View

2.
Khaligh-Razavi S, Kriegeskorte N . Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput Biol. 2014; 10(11):e1003915. PMC: 4222664. DOI: 10.1371/journal.pcbi.1003915. View

3.
Yamins D, Hong H, Cadieu C, Solomon E, Seibert D, DiCarlo J . Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc Natl Acad Sci U S A. 2014; 111(23):8619-24. PMC: 4060707. DOI: 10.1073/pnas.1403112111. View

4.
Tanaka H, Nayebi A, Maheswaranathan N, McIntosh L, Baccus S, Ganguli S . From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction. Adv Neural Inf Process Syst. 2022; 32:8537-8547. PMC: 8916592. View

5.
Hochstein S, Shapley R . Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J Physiol. 1976; 262(2):265-84. PMC: 1307643. DOI: 10.1113/jphysiol.1976.sp011595. View