Novel Insights into the Dermal Bioaccessibility and Human Exposure to Brominated Flame Retardant Additives in Microplastics
Overview
Affiliations
In this study, we optimized and applied an physiologically based extraction test to investigate the dermal bioaccessibility of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD), incorporated as additives in different types of microplastics (MPs), and assess human dermal exposure to these chemicals. The dermal bioaccessibility of PBDEs in polyethylene (PE) MPs was significantly higher ( < 0.05) than in polypropylene (PP) MPs. Both log and water solubility influenced the dermal bioaccessibility of PBDEs. For HBCDDs in polystyrene MPs, the dermally bioaccessible fractions were 1.8, 2.0, and 1.6% of the applied dose for α-, β-, and γ-HBCDDs, respectively. MP particle size and the presence of cosmetic formulations (antiperspirant, foundation, moisturizer and sunscreen) influenced the bioaccessibility of PBDEs and HBCDDs in MP matrices at varying degrees of significance. Human exposure to ∑PBDEs and ∑HBCDDs via dermal contact with MPs ranged from 0.02 to 22.2 and 0.01 to 231 ng (kg bw) d and from 0.02 to 6.27 and 0.2 to 65 ng (kg bw) d for adults and toddlers, respectively. Dermal exposure to PBDEs and HBCDDs in MPs is substantial, highlighting for the first time the significance of the dermal pathway as a major route of human exposure to additive chemicals in microplastics.
Wang J, Xie L, Wu X, Zhao Z, Lu Y, Sun H Toxicol Res (Camb). 2024; 13(6):tfae205.
PMID: 39677495 PMC: 11645661. DOI: 10.1093/toxres/tfae205.
Williams W, Aravamudhan S Polymers (Basel). 2024; 16(19).
PMID: 39408547 PMC: 11479023. DOI: 10.3390/polym16192837.
Programming mechanics in knitted materials, stitch by stitch.
Singal K, Dimitriyev M, Gonzalez S, Cachine A, Quinn S, Matsumoto E Nat Commun. 2024; 15(1):2622.
PMID: 38521784 PMC: 10960873. DOI: 10.1038/s41467-024-46498-z.
Feng Y, Tu C, Li R, Wu D, Yang J, Xia Y Eco Environ Health. 2024; 2(4):195-207.
PMID: 38435355 PMC: 10902512. DOI: 10.1016/j.eehl.2023.08.002.