» Articles » PMID: 37449010

A Collapsible Soft Actuator Facilitates Performance in Constrained Environments

Overview
Journal Adv Intell Syst
Date 2023 Jul 14
PMID 37449010
Authors
Affiliations
Soon will be listed here.
Abstract

Complex environments, such as those found in surgical and search-and-rescue applications, require soft devices to adapt to minimal space conditions without sacrificing the ability to complete dexterous tasks. Stacked Balloon Actuators (SBAs) are capable of large deformations despite folding nearly flat when deflated, making them ideal candidates for such applications. This paper presents the design, fabrication, modeling, and characterization of monolithic, inflatable, soft SBAs. Modeling is presented using analytical principles based on geometry, and then using conventional and real-time finite element methods. Both one and three degree-of-freedom (DoF) SBAs are fully characterized with regards to stroke, force, and workspace. Finally, three representative demonstrations show the SBA's small-aperture navigation, bracing, and workspace-enhancing capabilities.

Citing Articles

A fabrication strategy for millimeter-scale, self-sensing soft-rigid hybrid robots.

Lee H, Elder N, Leal M, Stantial S, Vergara Martinez E, Jos S Nat Commun. 2024; 15(1):8456.

PMID: 39349426 PMC: 11442515. DOI: 10.1038/s41467-024-51137-8.


An electropermanent magnet valve for the onboard control of multi-degree of freedom pneumatic soft robots.

Moran A, Vo V, McDonald K, Sultania P, Langenbrunner E, Chong J Commun Eng. 2024; 3(1):117.

PMID: 39179768 PMC: 11344064. DOI: 10.1038/s44172-024-00251-y.


A multifunctional soft robot for cardiac interventions.

Rogatinsky J, Recco D, Feichtmeier J, Kang Y, Kneier N, Hammer P Sci Adv. 2023; 9(43):eadi5559.

PMID: 37878705 PMC: 10599628. DOI: 10.1126/sciadv.adi5559.


A Millimeter-Scale Soft Robot for Tissue Biopsy Procedures.

Van Lewen D, Janke T, Austin R, Lee H, Billatos E, Russo S Adv Intell Syst. 2023; 5(5).

PMID: 37637939 PMC: 10456987. DOI: 10.1002/aisy.202200326.


Magnetically induced stiffening for soft robotics.

Gaeta L, McDonald K, Kinnicutt L, Le M, Wilkinson-Flicker S, Jiang Y Soft Matter. 2023; 19(14):2623-2636.

PMID: 36951679 PMC: 10183112. DOI: 10.1039/d2sm01390h.

References
1.
Laschi C, Mazzolai B, Cianchetti M . Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci Robot. 2020; 1(1). DOI: 10.1126/scirobotics.aah3690. View

2.
Rus D, Tolley M . Design, fabrication and control of soft robots. Nature. 2015; 521(7553):467-75. DOI: 10.1038/nature14543. View

3.
Talas S, Baydere B, Altinsoy T, Tutcu C, Samur E . Design and Development of a Growing Pneumatic Soft Robot. Soft Robot. 2020; 7(4):521-533. DOI: 10.1089/soro.2019.0083. View

4.
Yang H, Asbeck A . A Layered Manufacturing Approach for Soft and Soft-Rigid Hybrid Robots. Soft Robot. 2020; 7(2):218-232. DOI: 10.1089/soro.2018.0093. View

5.
Blumenschein L, Coad M, Haggerty D, Okamura A, Hawkes E . Design, Modeling, Control, and Application of Everting Vine Robots. Front Robot AI. 2021; 7:548266. PMC: 7805729. DOI: 10.3389/frobt.2020.548266. View