6.
Wang X, Gowik U, Tang H, Bowers J, Westhoff P, Paterson A
. Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol. 2009; 10(6):R68.
PMC: 2718502.
DOI: 10.1186/gb-2009-10-6-r68.
View
7.
Shenton M, Fontaine V, Hartwell J, Marsh J, Jenkins G, Nimmo H
. Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C4 plants. Plant J. 2006; 48(1):45-53.
DOI: 10.1111/j.1365-313X.2006.02850.x.
View
8.
Garcia-Maurino S, Monreal J, Alvarez R, Vidal J, Echevarria C
. Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation. Planta. 2003; 216(4):648-55.
DOI: 10.1007/s00425-002-0893-3.
View
9.
Li A, Jia S, Yobi A, Ge Z, Sato S, Zhang C
. Editing of an Alpha-Kafirin Gene Family Increases, Digestibility and Protein Quality in Sorghum. Plant Physiol. 2018; 177(4):1425-1438.
PMC: 6084649.
DOI: 10.1104/pp.18.00200.
View
10.
Nimmo H
. The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci. 2000; 5(2):75-80.
DOI: 10.1016/s1360-1385(99)01543-5.
View
11.
OLeary B, Park J, Plaxton W
. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J. 2011; 436(1):15-34.
DOI: 10.1042/BJ20110078.
View
12.
Ruiz-Ballesta I, Baena G, Gandullo J, Wang L, She Y, Plaxton W
. New insights into the post-translational modification of multiple phosphoenolpyruvate carboxylase isoenzymes by phosphorylation and monoubiquitination during sorghum seed development and germination. J Exp Bot. 2016; 67(11):3523-36.
PMC: 4892742.
DOI: 10.1093/jxb/erw186.
View
13.
Echevarria C, Vidal J, Jiao J, Chollet R
. Reversible light activation of the phosphoenolpyruvate carboxylase protein-serine kinase in maize leaves. FEBS Lett. 1990; 275(1-2):25-8.
DOI: 10.1016/0014-5793(90)81430-v.
View
14.
Hong S, Pangloli P, Perumal R, Cox S, Noronha L, Dia V
. A Comparative Study on Phenolic Content, Antioxidant Activity and Anti-Inflammatory Capacity of Aqueous and Ethanolic Extracts of Sorghum in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Antioxidants (Basel). 2020; 9(12).
PMC: 7767246.
DOI: 10.3390/antiox9121297.
View
15.
Kaur N, Chugh V, Gupta A
. Essential fatty acids as functional components of foods- a review. J Food Sci Technol. 2014; 51(10):2289-303.
PMC: 4190204.
DOI: 10.1007/s13197-012-0677-0.
View
16.
Doubnerova V, Ryslava H
. What can enzymes of C₄ photosynthesis do for C₃ plants under stress?. Plant Sci. 2011; 180(4):575-83.
DOI: 10.1016/j.plantsci.2010.12.005.
View
17.
Bradford M
. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54.
DOI: 10.1016/0003-2697(76)90527-3.
View
18.
Echevarria C, Alvarez R, Soler A, Vidal J
. Salt stress increases the Ca2+-independent phosphoenolpyruvate carboxylase kinase activity in Sorghum leaves. Planta. 2002; 214(2):283-7.
DOI: 10.1007/s004250100616.
View
19.
Paterson A, Bowers J, Bruggmann R, Dubchak I, Grimwood J, Gundlach H
. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009; 457(7229):551-6.
DOI: 10.1038/nature07723.
View
20.
Do P, Lee H, Nelson-Vasilchik K, Kausch A, Zhang Z
. Rapid and Efficient Genetic Transformation of Sorghum via Agrobacterium-Mediated Method. Curr Protoc Plant Biol. 2018; 3(4):e20077.
DOI: 10.1002/cppb.20077.
View