» Articles » PMID: 37443532

Predicting Mechanical Thrombectomy Outcome and Time Limit Through ADC Value Analysis: A Comprehensive Clinical and Simulation Study Using Machine Learning

Overview
Specialty Radiology
Date 2023 Jul 14
PMID 37443532
Authors
Affiliations
Soon will be listed here.
Abstract

Predicting outcomes after mechanical thrombectomy (MT) remains challenging for patients with acute ischemic stroke (AIS). This study aimed to explore the usefulness of machine learning (ML) methods using detailed apparent diffusion coefficient (ADC) analysis to predict patient outcomes and simulate the time limit for MT in AIS. A total of 75 consecutive patients with AIS with complete reperfusion in MT were included; 20% were separated to test data. The threshold ranged from 620 × 10 mm/s to 480 × 10 mm/s with a 20 × 10 mm/s step. The mean, standard deviation, and pixel number of the region of interest were obtained according to the threshold. Simulation data were created by mean measurement value of patients with a modified Rankin score of 3-4. The time limit was simulated from the cross point of the prediction score according to the time to perform reperfusion from imaging. The extra tree classifier accurately predicted the outcome (AUC: 0.833. Accuracy: 0.933). In simulation data, the prediction score to obtain a good outcome decreased according to increasing time to reperfusion, and the time limit was longer among younger patients. ML methods using detailed ADC analysis accurately predicted patient outcomes in AIS and simulated tolerance time for MT.

References
1.
Purushotham A, Campbell B, Straka M, Mlynash M, Olivot J, Bammer R . Apparent diffusion coefficient threshold for delineation of ischemic core. Int J Stroke. 2013; 10(3):348-53. PMC: 3786020. DOI: 10.1111/ijs.12068. View

2.
Albers G, Marks M, Kemp S, Christensen S, Tsai J, Ortega-Gutierrez S . Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N Engl J Med. 2018; 378(8):708-718. PMC: 6590673. DOI: 10.1056/NEJMoa1713973. View

3.
Tanaka K, Goyal M, Menon B, Campbell B, Mitchell P, Jovin T . Significance of Baseline Ischemic Core Volume on Stroke Outcome After Endovascular Therapy in Patients Age ≥75 Years: A Pooled Analysis of Individual Patient Data From 7 Trials. Stroke. 2022; 53(12):3564-3571. DOI: 10.1161/STROKEAHA.122.039774. View

4.
Shlobin N, Baig A, Waqas M, Patel T, Dossani R, Wilson M . Artificial Intelligence for Large-Vessel Occlusion Stroke: A Systematic Review. World Neurosurg. 2021; 159:207-220.e1. PMC: 9172262. DOI: 10.1016/j.wneu.2021.12.004. View

5.
Goyal M, Demchuk A, Menon B, Eesa M, Rempel J, Thornton J . Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015; 372(11):1019-30. DOI: 10.1056/NEJMoa1414905. View