» Articles » PMID: 37426745

Classification of Semantic Paraphasias: Optimization of a Word Embedding Model

Overview
Journal Proc Conf
Date 2023 Jul 10
PMID 37426745
Authors
Affiliations
Soon will be listed here.
Abstract

In clinical assessment of people with aphasia, impairment in the ability to recall and produce words for objects () is assessed using a confrontation naming task, where a target stimulus is viewed and a corresponding label is spoken by the participant. Vector space word embedding models have had inital results in assessing semantic similarity of target-production pairs in order to automate scoring of this task; however, the resulting models are also highly dependent upon training parameters. To select an optimal family of models, we fit a beta regression model to the distribution of performance metrics on a set of 2,880 grid search models and evaluate the resultant first- and second-order effects to explore how parameterization affects model performance. Comparing to SimLex-999, we show that clinical data can be used in an evaluation task with comparable optimal parameter settings as standard NLP evaluation datasets.

Citing Articles

The Post-Stroke Speech Transcription (PSST) Challenge.

Gale R, Fleegle M, Fergadiotis G, Bedrick S LREC Int Conf Lang Resour Eval. 2025; 2022(RaPID4 Workshop):41-55.

PMID: 39802323 PMC: 11723709.


Automating Intended Target Identification for Paraphasias in Discourse Using a Large Language Model.

Salem A, Gale R, Fleegle M, Fergadiotis G, Bedrick S J Speech Lang Hear Res. 2023; 66(12):4949-4966.

PMID: 37931137 PMC: 11001375. DOI: 10.1044/2023_JSLHR-23-00121.


ParAlg: A Paraphasia Algorithm for Multinomial Classification of Picture Naming Errors.

Casilio M, Fergadiotis G, Salem A, Gale R, McKinney-Bock K, Bedrick S J Speech Lang Hear Res. 2023; 66(3):966-986.

PMID: 36791263 PMC: 10461785. DOI: 10.1044/2022_JSLHR-22-00255.


Refining Semantic Similarity of Paraphasias Using a Contextual Language Model.

Salem A, Gale R, Casilio M, Fleegle M, Fergadiotis G, Bedrick S J Speech Lang Hear Res. 2022; 66(1):206-220.

PMID: 36492294 PMC: 10023190. DOI: 10.1044/2022_JSLHR-22-00277.


Assessing naming errors using an automated machine learning approach.

Schnur T, Lei C Neuropsychology. 2022; 36(8):709-718.

PMID: 36107705 PMC: 9970144. DOI: 10.1037/neu0000860.

References
1.
Fergadiotis G, Gorman K, Bedrick S . Algorithmic Classification of Five Characteristic Types of Paraphasias. Am J Speech Lang Pathol. 2016; 25(4S):S776-S787. DOI: 10.1044/2016_AJSLP-15-0147. View

2.
Dell G . A spreading-activation theory of retrieval in sentence production. Psychol Rev. 1986; 93(3):283-321. View

3.
Mirman D, Strauss T, Brecher A, Walker G, Sobel P, Dell G . A large, searchable, web-based database of aphasic performance on picture naming and other tests of cognitive function. Cogn Neuropsychol. 2011; 27(6):495-504. PMC: 3162111. DOI: 10.1080/02643294.2011.574112. View

4.
Hanley J, McNeil B . The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982; 143(1):29-36. DOI: 10.1148/radiology.143.1.7063747. View

5.
Hula W, Kellough S, Fergadiotis G . Development and Simulation Testing of a Computerized Adaptive Version of the Philadelphia Naming Test. J Speech Lang Hear Res. 2015; 58(3):878-890. DOI: 10.1044/2015_JSLHR-L-14-0297. View