» Articles » PMID: 37402368

Targeted High-throughput Mutagenesis of the Human Spliceosome Reveals Its In vivo Operating Principles

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2023 Jul 4
PMID 37402368
Authors
Affiliations
Soon will be listed here.
Abstract

The spliceosome is a staggeringly complex machine, comprising, in humans, 5 snRNAs and >150 proteins. We scaled haploid CRISPR-Cas9 base editing to target the entire human spliceosome and investigated the mutants using the U2 snRNP/SF3b inhibitor, pladienolide B. Hypersensitive substitutions define functional sites in the U1/U2-containing A complex but also in components that act as late as the second chemical step after SF3b is dissociated. Viable resistance substitutions map not only to the pladienolide B-binding site but also to the G-patch domain of SUGP1, which lacks orthologs in yeast. We used these mutants and biochemical approaches to identify the spliceosomal disassemblase DHX15/hPrp43 as the ATPase ligand for SUGP1. These and other data support a model in which SUGP1 promotes splicing fidelity by triggering early spliceosome disassembly in response to kinetic blocks. Our approach provides a template for the analysis of essential cellular machines in humans.

Citing Articles

Generation of transient totipotent blastomere-like stem cells by short-term high-dose Pladienolide B treatment.

Zhang W, An S, Hou S, He X, Xiang J, Yan H Sci China Life Sci. 2025; .

PMID: 40024996 DOI: 10.1007/s11427-024-2774-2.


Structural insights into spliceosome fidelity: DHX35-GPATCH1- mediated rejection of aberrant splicing substrates.

Li Y, Fischer P, Wang M, Zhou Q, Song A, Yuan R Cell Res. 2025; .

PMID: 40016598 DOI: 10.1038/s41422-025-01084-w.


Full-length transcriptome atlas of gallbladder cancer reveals trastuzumab resistance conferred by ERBB2 alternative splicing.

Wang Z, Gao L, Jia Z, Liu L, Gu A, Liu Z Signal Transduct Target Ther. 2025; 10(1):54.

PMID: 39948369 PMC: 11825701. DOI: 10.1038/s41392-025-02150-w.


SF3B1: from core splicing factor to oncogenic driver.

Bak-Gordon P, Manley J RNA. 2025; 31(3):314-332.

PMID: 39773890 PMC: 11874996. DOI: 10.1261/rna.080368.124.


Building the first base editors.

Waterbury A, Iram I, Liau B Nat Chem Biol. 2024; 21(1):16-17.

PMID: 39719491 DOI: 10.1038/s41589-024-01790-3.


References
1.
Wilkinson M, Charenton C, Nagai K . RNA Splicing by the Spliceosome. Annu Rev Biochem. 2019; 89:359-388. DOI: 10.1146/annurev-biochem-091719-064225. View

2.
Li Y, van de Geijn B, Raj A, Knowles D, Petti A, Golan D . RNA splicing is a primary link between genetic variation and disease. Science. 2016; 352(6285):600-4. PMC: 5182069. DOI: 10.1126/science.aad9417. View

3.
Haffke M, Marek M, Pelosse M, Diebold M, Schlattner U, Berger I . Characterization and production of protein complexes by co-expression in Escherichia coli. Methods Mol Biol. 2014; 1261:63-89. DOI: 10.1007/978-1-4939-2230-7_4. View

4.
Anzalone A, Koblan L, Liu D . Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020; 38(7):824-844. DOI: 10.1038/s41587-020-0561-9. View

5.
Gamboa Lopez A, Rao Allu S, Mendez P, Chandrashekar Reddy G, Maul-Newby H, Ghosh A . Herboxidiene Features That Mediate Conformation-Dependent SF3B1 Interactions to Inhibit Splicing. ACS Chem Biol. 2021; 16(3):520-528. PMC: 8189251. DOI: 10.1021/acschembio.0c00965. View