» Articles » PMID: 37393327

Lean-water Hydrogel Electrolyte for Zinc Ion Batteries

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Jul 1
PMID 37393327
Authors
Affiliations
Soon will be listed here.
Abstract

Solid polymer electrolytes (SPEs) and hydrogel electrolytes were developed as electrolytes for zinc ion batteries (ZIBs). Hydrogels can retain water molecules and provide high ionic conductivities; however, they contain many free water molecules, inevitably causing side reactions on the zinc anode. SPEs can enhance the stability of anodes, but they typically possess low ionic conductivities and result in high impedance. Here, we develop a lean water hydrogel electrolyte, aiming to balance ion transfer, anode stability, electrochemical stability window and resistance. This hydrogel is equipped with a molecular lubrication mechanism to ensure fast ion transportation. Additionally, this design leads to a widened electrochemical stability window and highly reversible zinc plating/ stripping. The full cell shows excellent cycling stability and capacity retentions at high and low current rates, respectively. Moreover, superior adhesion ability can be achieved, meeting the needs of flexible devices.

Citing Articles

Electrochemical dendrite management via voltage-controlled rearrangement.

Liu Z, Wu X, Xiao X, Xiao Z, Fu Q, Zheng Z Natl Sci Rev. 2025; 12(4):nwaf013.

PMID: 40060923 PMC: 11887854. DOI: 10.1093/nsr/nwaf013.


Engineering Interphasial Chemistry for Zn Anodes in Aqueous Zinc Ion Batteries.

Zhu B, Tang J, Yao Z, Cui J, Hou Y, Chen J Chem Bio Eng. 2025; 1(5):381-413.

PMID: 39975799 PMC: 11835151. DOI: 10.1021/cbe.4c00053.


Toward Green and Sustainable Zinc-Ion Batteries: The Potential of Natural Solvent-Based Electrolytes.

Yaman Uzunoglu G, Yuksel R Small. 2025; 21(6):e2411478.

PMID: 39838768 PMC: 11817914. DOI: 10.1002/smll.202411478.


Electrolyte design for reversible zinc metal chemistry.

Zhang B, Yao J, Wu C, Li Y, Liu J, Wang J Nat Commun. 2025; 16(1):71.

PMID: 39747912 PMC: 11695615. DOI: 10.1038/s41467-024-55657-1.


Zinc Ion Hybrid Capacitors: Four Essential Parameters Determining Device Energy Density.

Wu J, Zhu D, Pan Y, Prabowo J, Wei L, Chen Y Adv Sci (Weinh). 2024; 11(48):e2408997.

PMID: 39501935 PMC: 11672303. DOI: 10.1002/advs.202408997.


References
1.
Wang F, Borodin O, Gao T, Fan X, Sun W, Han F . Highly reversible zinc metal anode for aqueous batteries. Nat Mater. 2018; 17(6):543-549. DOI: 10.1038/s41563-018-0063-z. View

2.
Wang X, Zhang Z, Xi B, Chen W, Jia Y, Feng J . Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano. 2021; 15(6):9244-9272. DOI: 10.1021/acsnano.1c01389. View

3.
Li G, Lu F, Dou X, Wang X, Luo D, Sun H . Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium-Sulfur Batteries. J Am Chem Soc. 2020; 142(7):3583-3592. DOI: 10.1021/jacs.9b13303. View

4.
Park H, Jung Y, Yang S, Shin W, Kang J, Kim H . Spectroscopic and computational insight into the intermolecular interactions between Zwitter-type ionic liquids and water molecules. Chemphyschem. 2010; 11(8):1711-7. DOI: 10.1002/cphc.200900925. View

5.
Qiu H, Hu R, Du X, Chen Z, Zhao J, Lu G . Eutectic Crystallization Activates Solid-State Zinc-Ion Conduction. Angew Chem Int Ed Engl. 2021; 61(2):e202113086. DOI: 10.1002/anie.202113086. View