» Articles » PMID: 37379382

Chiral Electroluminescence from Thin-film Perovskite Metacavities

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2023 Jun 28
PMID 37379382
Authors
Affiliations
Soon will be listed here.
Abstract

Chiral light sources realized in ultracompact device platforms are highly desirable for various applications. Among active media used for thin-film emission devices, lead-halide perovskites have been extensively studied for photoluminescence due to their exceptional properties. However, up to date, there have been no demonstrations of chiral electroluminescence with a substantial degree of circular polarization (DCP) based on perovskite materials, being critical for the development of practical devices. Here, we propose a concept of chiral light sources based on a thin-film perovskite metacavity and experimentally demonstrate chiral electroluminescence with a peak DCP approaching 0.38. We design a metacavity created by a metal and a dielectric metasurface supporting photonic eigenstates with a close-to-maximum chiral response. Chiral cavity modes facilitate asymmetric electroluminescence of pairs of left and right circularly polarized waves propagating in the opposite oblique directions. The proposed ultracompact light sources are especially advantageous for many applications requiring chiral light beams of both helicities.

Citing Articles

Ultrathin, Dynamically Controllable Circularly Polarized Emission Laser Enabled by Resonant Chiral Metasurfaces.

Katsantonis I, Tasolamprou A, Economou E, Koschny T, Kafesaki M ACS Photonics. 2025; 12(1):71-78.

PMID: 39830860 PMC: 11741137. DOI: 10.1021/acsphotonics.4c01005.


Manipulating chiral photon generation from plasmonic nanocavity-emitter hybrid systems: from weak to strong coupling.

Yang J, Hu H, Zhang Q, Zu S, Chen W, Xu H Nanophotonics. 2024; 13(3):357-368.

PMID: 39633671 PMC: 11501219. DOI: 10.1515/nanoph-2023-0738.


A single nanophotonic platform for producing circularly polarized white light from non-chiral emitters.

Mendoza-Carreno J, Bertucci S, Garbarino M, Cirignano M, Fiorito S, Lova P Nat Commun. 2024; 15(1):10443.

PMID: 39616193 PMC: 11608313. DOI: 10.1038/s41467-024-54792-z.


Giant chiral amplification of chiral 2D perovskites via dynamic crystal reconstruction.

Kim H, Choi W, Kim Y, Kim J, Ahn J, Song I Sci Adv. 2024; 10(34):eado5942.

PMID: 39167654 PMC: 11338236. DOI: 10.1126/sciadv.ado5942.

References
1.
Wang Z, Zhang B, Deng H . Dispersion engineering for vertical microcavities using subwavelength gratings. Phys Rev Lett. 2015; 114(7):073601. DOI: 10.1103/PhysRevLett.114.073601. View

2.
Smith M, Connor B, Karunadasa H . Tuning the Luminescence of Layered Halide Perovskites. Chem Rev. 2019; 119(5):3104-3139. DOI: 10.1021/acs.chemrev.8b00477. View

3.
Ye C, Jiang J, Zou S, Mi W, Xiao Y . Core-Shell Three-Dimensional Perovskite Nanocrystals with Chiral-Induced Spin Selectivity for Room-Temperature Spin Light-Emitting Diodes. J Am Chem Soc. 2022; 144(22):9707-9714. DOI: 10.1021/jacs.2c01214. View

4.
Veldhuis S, Boix P, Yantara N, Li M, Sum T, Mathews N . Perovskite Materials for Light-Emitting Diodes and Lasers. Adv Mater. 2016; 28(32):6804-34. DOI: 10.1002/adma.201600669. View

5.
Wang J, Zhang C, Liu H, McLaughlin R, Zhai Y, Vardeny S . Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat Commun. 2019; 10(1):129. PMC: 6328620. DOI: 10.1038/s41467-018-07952-x. View