6.
Lin C, Metters A
. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006; 58(12-13):1379-408.
DOI: 10.1016/j.addr.2006.09.004.
View
7.
Das D, Ghosh P, Ghosh A, Haldar C, Dhara S, Panda A
. Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(N-isopropylacrylamide) for in Vitro/in Vivo Controlled Drug Release. ACS Appl Mater Interfaces. 2015; 7(26):14338-51.
DOI: 10.1021/acsami.5b02975.
View
8.
Lee W, Lee S
. Effect of gelatin on the drug release behaviors for the organic hybrid gels based on N-isopropylacrylamide and gelatin. J Mater Sci Mater Med. 2007; 18(6):1089-96.
DOI: 10.1007/s10856-007-0142-1.
View
9.
Peppas N
. 1. Commentary on an exponential model for the analysis of drug delivery: Original research article: a simple equation for description of solute release: I II. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres,.... J Control Release. 2014; 190:31-2.
View
10.
Manjula B, Varaprasad K, Sadiku R, Ramam K, Reddy G, Mohana Raju K
. Development of microbial resistant thermosensitive Ag nanocomposite (gelatin) hydrogels via green process. J Biomed Mater Res A. 2013; 102(4):928-34.
DOI: 10.1002/jbm.a.34780.
View
11.
Zafar M, Shah T, Rawal A, Siores E
. Preparation and characterisation of thermoresponsive nanogels for smart antibacterial fabrics. Mater Sci Eng C Mater Biol Appl. 2014; 40:135-41.
DOI: 10.1016/j.msec.2014.03.033.
View
12.
de Oliveira T, Mukherji D, Kremer K, Netz P
. Effects of stereochemistry and copolymerization on the LCST of PNIPAm. J Chem Phys. 2017; 146(3):034904.
DOI: 10.1063/1.4974165.
View
13.
Sun X, Ma C, Gong W, Ma Y, Ding Y, Liu L
. Biological properties of sulfanilamide-loaded alginate hydrogel fibers based on ionic and chemical crosslinking for wound dressings. Int J Biol Macromol. 2020; 157:522-529.
DOI: 10.1016/j.ijbiomac.2020.04.210.
View
14.
James C, Johnson A, Jenkins A
. Antimicrobial surface grafted thermally responsive PNIPAM-co-ALA nano-gels. Chem Commun (Camb). 2011; 47(48):12777-9.
DOI: 10.1039/c1cc15372b.
View
15.
Pemberton M, Lohmann B
. Risk Assessment of residual monomer migrating from acrylic polymers and causing Allergic Contact Dermatitis during normal handling and use. Regul Toxicol Pharmacol. 2014; 69(3):467-75.
DOI: 10.1016/j.yrtph.2014.05.013.
View
16.
Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q
. Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine. 2018; 13:2217-2263.
PMC: 5905846.
DOI: 10.2147/IJN.S154748.
View
17.
Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C
. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010; 12(3):263-71.
PMC: 2895453.
DOI: 10.1208/s12248-010-9185-1.
View
18.
Costa P, Sousa Lobo J
. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001; 13(2):123-33.
DOI: 10.1016/s0928-0987(01)00095-1.
View
19.
Liu X, Pramoda K, Yang Y, Chow S, He C
. Cholesteryl-grafted functional amphiphilic poly(N-isopropylacrylamide-co-N-hydroxylmethylacrylamide): synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials. 2004; 25(13):2619-28.
DOI: 10.1016/j.biomaterials.2003.09.028.
View
20.
Peppas N, Bures P, Leobandung W, Ichikawa H
. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000; 50(1):27-46.
DOI: 10.1016/s0939-6411(00)00090-4.
View