6.
Sadhukhan P, Kundu M, Chatterjee S, Ghosh N, Manna P, Das J
. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater Sci Eng C Mater Biol Appl. 2019; 100:129-140.
DOI: 10.1016/j.msec.2019.02.096.
View
7.
Yue D, Zeng C, Okyere S, Chen Z, Hu Y
. Glycine nano-selenium prevents brain oxidative stress and neurobehavioral abnormalities caused by MPTP in rats. J Trace Elem Med Biol. 2020; 64:126680.
DOI: 10.1016/j.jtemb.2020.126680.
View
8.
Kuhlbrandt W
. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015; 13:89.
PMC: 4625866.
DOI: 10.1186/s12915-015-0201-x.
View
9.
Ren Z, Han X, Wang L, Wang Y
. Hyaluronic acid functionalized ZnO nanoparticles co-deliver AS and GOD for synergistic cancer starvation and oxidative damage. Sci Rep. 2022; 12(1):4574.
PMC: 8931118.
DOI: 10.1038/s41598-022-08627-w.
View
10.
Gopisetty M, Kovacs D, Igaz N, Ronavari A, Belteky P, Razga Z
. Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. J Nanobiotechnology. 2019; 17(1):9.
PMC: 6341731.
DOI: 10.1186/s12951-019-0448-4.
View
11.
Johnson S, Yanos M, Kayser E, Quintana A, Sangesland M, Castanza A
. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013; 342(6165):1524-8.
PMC: 4055856.
DOI: 10.1126/science.1244360.
View
12.
Chen Q, Wang N, Zhu M, Lu J, Zhong H, Xue X
. TiO nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox Biol. 2018; 15:266-276.
PMC: 5752088.
DOI: 10.1016/j.redox.2017.12.011.
View
13.
Piao M, Kang K, Lee I, Kim H, Kim S, Choi J
. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2010; 201(1):92-100.
DOI: 10.1016/j.toxlet.2010.12.010.
View
14.
Choi Y, Cho T, Kim J, Han S, Kim S
. Amine terminated G-6 PAMAM dendrimer and its interaction with DNA probed by Hoechst 33258. Biophys Chem. 2006; 121(2):142-9.
DOI: 10.1016/j.bpc.2006.01.005.
View
15.
Yu H, Koilkonda R, Chou T, Porciatti V, Ozdemir S, Chiodo V
. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber's hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci U S A. 2012; 109(20):E1238-47.
PMC: 3356643.
DOI: 10.1073/pnas.1119577109.
View
16.
Nadanaciva S, Dykens J, Bernal A, Capaldi R, Will Y
. Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration. Toxicol Appl Pharmacol. 2007; 223(3):277-87.
DOI: 10.1016/j.taap.2007.06.003.
View
17.
Hauser A, Mitov M, Daley E, McGarry R, Anderson K, Hilt J
. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials. 2016; 105:127-135.
PMC: 5321199.
DOI: 10.1016/j.biomaterials.2016.07.032.
View
18.
Marrache S, Pathak R, Darley K, Choi J, Zaver D, Kolishetti N
. Nanocarriers for tracking and treating diseases. Curr Med Chem. 2013; 20(28):3500-14.
PMC: 8085808.
DOI: 10.2174/0929867311320280007.
View
19.
Bartsakoulia M, Myller J, Gomez-Duran A, Yu-Wai-Man P, Boczonadi V, Horvath R
. Cysteine Supplementation May be Beneficial in a Subgroup of Mitochondrial Translation Deficiencies. J Neuromuscul Dis. 2016; 3(3):363-379.
DOI: 10.3233/JND-160178.
View
20.
Sharma A, Liaw K, Sharma R, Zhang Z, Kannan S, Kannan R
. Targeting Mitochondrial Dysfunction and Oxidative Stress in Activated Microglia using Dendrimer-Based Therapeutics. Theranostics. 2018; 8(20):5529-5547.
PMC: 6276292.
DOI: 10.7150/thno.29039.
View