6.
Kim D, Paggi J, Park C, Bennett C, Salzberg S
. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019; 37(8):907-915.
PMC: 7605509.
DOI: 10.1038/s41587-019-0201-4.
View
7.
Schreiber L
. Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci. 2010; 15(10):546-53.
DOI: 10.1016/j.tplants.2010.06.004.
View
8.
Robinson M, McCarthy D, Smyth G
. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009; 26(1):139-40.
PMC: 2796818.
DOI: 10.1093/bioinformatics/btp616.
View
9.
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M
. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-50.
PMC: 1239896.
DOI: 10.1073/pnas.0506580102.
View
10.
Rathore N, Kumar P, Mehta N, Swarnkar M, Shankar R, Chawla A
. Time-series RNA-Seq transcriptome profiling reveals novel insights about cold acclimation and de-acclimation processes in an evergreen shrub of high altitude. Sci Rep. 2022; 12(1):15553.
PMC: 9481616.
DOI: 10.1038/s41598-022-19834-w.
View
11.
Kim D, Langmead B, Salzberg S
. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015; 12(4):357-60.
PMC: 4655817.
DOI: 10.1038/nmeth.3317.
View
12.
Shi Y, Su Z, Yang H, Wang W, Jin G, He G
. Alternative splicing coupled to nonsense-mediated mRNA decay contributes to the high-altitude adaptation of maca (Lepidium meyenii). Gene. 2019; 694:7-18.
DOI: 10.1016/j.gene.2018.12.082.
View
13.
Gao Q, Wang L, Zhang M, Wei Y, Lin W
. Recent Advances on Feasible Strategies for Monoterpenoid Production in . Front Bioeng Biotechnol. 2020; 8:609800.
PMC: 7736617.
DOI: 10.3389/fbioe.2020.609800.
View
14.
Tang X, Li J, Liu L, Jing H, Zuo W, Zeng Y
. Transcriptome Analysis Provides Insights into Adaptation to High Altitude. Life (Basel). 2022; 12(9).
PMC: 9503701.
DOI: 10.3390/life12091337.
View
15.
Franke R, Schreiber L
. Suberin--a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol. 2007; 10(3):252-9.
DOI: 10.1016/j.pbi.2007.04.004.
View
16.
Zhang T, Qiao Q, Novikova P, Wang Q, Yue J, Guan Y
. Genome of , a close relative of , shows ecological adaptation to high altitude. Proc Natl Acad Sci U S A. 2019; 116(14):7137-7146.
PMC: 6452661.
DOI: 10.1073/pnas.1817580116.
View
17.
Creux N, Harmer S
. Circadian Rhythms in Plants. Cold Spring Harb Perspect Biol. 2019; 11(9).
PMC: 6719598.
DOI: 10.1101/cshperspect.a034611.
View
18.
Cheviron Z, Brumfield R
. Genomic insights into adaptation to high-altitude environments. Heredity (Edinb). 2011; 108(4):354-61.
PMC: 3313048.
DOI: 10.1038/hdy.2011.85.
View
19.
Gurung P, Upadhyay A, Bhardwaj P, Sowdhamini R, Ramakrishnan U
. Transcriptome analysis reveals plasticity in gene regulation due to environmental cues in Primula sikkimensis, a high altitude plant species. BMC Genomics. 2019; 20(1):989.
PMC: 6916092.
DOI: 10.1186/s12864-019-6354-1.
View
20.
Sun Y, Fu T, Jin J, Murphy R, Hillis D, Zhang Y
. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc Natl Acad Sci U S A. 2018; 115(45):E10634-E10641.
PMC: 6233079.
DOI: 10.1073/pnas.1813593115.
View