6.
Silver I, Murrills R, Etherington D
. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 1988; 175(2):266-76.
DOI: 10.1016/0014-4827(88)90191-7.
View
7.
Martin T, Sims N, Seeman E
. Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocr Rev. 2021; 42(4):383-406.
DOI: 10.1210/endrev/bnab005.
View
8.
Mellor L, Mohiti-Asli M, Williams J, Kannan A, Dent M, Guilak F
. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source. Tissue Eng Part A. 2015; 21(17-18):2323-33.
PMC: 4556087.
DOI: 10.1089/ten.TEA.2014.0572.
View
9.
Wan L, Jiang J, Arnold D, Guo X, Lu H, Mow V
. Calcium Concentration Effects on the Mechanical and Biochemical Properties of Chondrocyte-Alginate Constructs. Cell Mol Bioeng. 2009; 1(1):93-102.
PMC: 2772085.
DOI: 10.1007/s12195-008-0014-x.
View
10.
St-Pierre J, Gan L, Wang J, Pilliar R, Grynpas M, Kandel R
. The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate. Acta Biomater. 2012; 8(4):1603-15.
DOI: 10.1016/j.actbio.2011.12.022.
View
11.
Naski M, Colvin J, Coffin J, Ornitz D
. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development. 1998; 125(24):4977-88.
DOI: 10.1242/dev.125.24.4977.
View
12.
Mauck R, Seyhan S, Ateshian G, Hung C
. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng. 2002; 30(8):1046-56.
DOI: 10.1114/1.1512676.
View
13.
Frerker N, Karlsen T, Stensland M, Nyman T, Rayner S, Brinchmann J
. Comparison between articular chondrocytes and mesenchymal stromal cells for the production of articular cartilage implants. Front Bioeng Biotechnol. 2023; 11:1116513.
PMC: 9989206.
DOI: 10.3389/fbioe.2023.1116513.
View
14.
Praxenthaler H, Kramer E, Weisser M, Hecht N, Fischer J, Grossner T
. Extracellular matrix content and WNT/β-catenin levels of cartilage determine the chondrocyte response to compressive load. Biochim Biophys Acta Mol Basis Dis. 2017; 1864(3):851-859.
DOI: 10.1016/j.bbadis.2017.12.024.
View
15.
Pattappa G, Johnstone B, Zellner J, Docheva D, Angele P
. The Importance of Physioxia in Mesenchymal Stem Cell Chondrogenesis and the Mechanisms Controlling Its Response. Int J Mol Sci. 2019; 20(3).
PMC: 6387316.
DOI: 10.3390/ijms20030484.
View
16.
Loeser R, Pacione C, Chubinskaya S
. The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheum. 2003; 48(8):2188-96.
DOI: 10.1002/art.11209.
View
17.
Kunisch E, Knauf A, Hesse E, Freudenberg U, Werner C, Bothe F
. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication. 2018; 11(1):015001.
DOI: 10.1088/1758-5090/aae75a.
View
18.
Aquino-Martinez R, Artigas N, Gamez B, Rosa J, Ventura F
. Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling. PLoS One. 2017; 12(5):e0178158.
PMC: 5444778.
DOI: 10.1371/journal.pone.0178158.
View
19.
Luckgen J, Raque E, Reiner T, Diederichs S, Richter W
. NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels. Stem Cell Res Ther. 2022; 13(1):168.
PMC: 9044876.
DOI: 10.1186/s13287-022-02843-x.
View
20.
Burton D, Foster M, Johnson K, Hiramoto M, Deftos L, Terkeltaub R
. Chondrocyte calcium-sensing receptor expression is up-regulated in early guinea pig knee osteoarthritis and modulates PTHrP, MMP-13, and TIMP-3 expression. Osteoarthritis Cartilage. 2005; 13(5):395-404.
DOI: 10.1016/j.joca.2005.01.002.
View