6.
Guo Z, Zuo J, Liu X, Gong J, Ma K, Feng J
. Effects of titanium dioxide (TiO)/activated carbon (AC) nanoparticle on the growth and immunity of the giant freshwater prawn, Macrobrachium rosenbergii: potential toxicological risks to the aquatic crustaceans. Environ Sci Pollut Res Int. 2022; 30(12):33322-33333.
DOI: 10.1007/s11356-022-24555-8.
View
7.
Xie X, Zhou Y, Liu M, Tao T, Jiang Q, Zhu D
. The nuclear receptor E75 from the swimming crab, Portunus trituberculatus: cDNA cloning, transcriptional analysis, and putative roles on expression of ecdysteroid-related genes. Comp Biochem Physiol B Biochem Mol Biol. 2016; 200:69-77.
DOI: 10.1016/j.cbpb.2016.06.004.
View
8.
Baun A, Hartmann N, Grieger K, Kusk K
. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology. 2008; 17(5):387-95.
DOI: 10.1007/s10646-008-0208-y.
View
9.
Mane-Padros D, Cruz J, Vilaplana L, Pascual N, Belles X, Martin D
. The nuclear hormone receptor BgE75 links molting and developmental progression in the direct-developing insect Blattella germanica. Dev Biol. 2008; 315(1):147-60.
DOI: 10.1016/j.ydbio.2007.12.015.
View
10.
Ward J, Kach D
. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res. 2009; 68(3):137-42.
DOI: 10.1016/j.marenvres.2009.05.002.
View
11.
Techa S, Chung J
. Ecdysone and retinoid-X receptors of the blue crab, Callinectes sapidus: cloning and their expression patterns in eyestalks and Y-organs during the molt cycle. Gene. 2013; 527(1):139-53.
DOI: 10.1016/j.gene.2013.05.035.
View
12.
Riddiford L, Hiruma K, Zhou X, Nelson C
. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol. 2003; 33(12):1327-38.
DOI: 10.1016/j.ibmb.2003.06.001.
View
13.
LAM G, Jiang C, Thummel C
. Coordination of larval and prepupal gene expression by the DHR3 orphan receptor during Drosophila metamorphosis. Development. 1997; 124(9):1757-69.
DOI: 10.1242/dev.124.9.1757.
View
14.
Li Y, Du X, Liu Z, Zhang M, Huang Y, Tian J
. Two genes related to reproductive development in the juvenile prawn, Macrobrachium nipponense: Molecular characterization and transcriptional response to nanoplastic exposure. Chemosphere. 2021; 281:130827.
DOI: 10.1016/j.chemosphere.2021.130827.
View
15.
Guo W, Liu X, Fu K, Shi J, Lu F, Li G
. Functions of nuclear receptor HR3 during larval-pupal molting in Leptinotarsa decemlineata (Say) revealed by in vivo RNA interference. Insect Biochem Mol Biol. 2015; 63:23-33.
DOI: 10.1016/j.ibmb.2015.05.010.
View
16.
Hannas B, LeBlanc G
. Expression and ecdysteroid responsiveness of the nuclear receptors HR3 and E75 in the crustacean Daphnia magna. Mol Cell Endocrinol. 2009; 315(1-2):208-18.
PMC: 3711079.
DOI: 10.1016/j.mce.2009.07.013.
View
17.
Jose Priya T, Li F, Zhang J, Yang C, Xiang J
. Molecular characterization of an ecdysone inducible gene E75 of Chinese shrimp Fenneropenaeus chinensis and elucidation of its role in molting by RNA interference. Comp Biochem Physiol B Biochem Mol Biol. 2010; 156(3):149-57.
DOI: 10.1016/j.cbpb.2010.02.004.
View
18.
Guo Z, Zuo J, Feng J, Li J, Zhang S, Ma K
. Impact of Titanium Dioxide-Graphene Oxide (TiO-GO) Composite Nanoparticle on the Juveniles of the Giant River Prawn, Macrobrachium rosenbergii: Physio-Biochemistry and Transcriptional Response. Mar Biotechnol (NY). 2022; 25(1):45-56.
DOI: 10.1007/s10126-022-10180-6.
View
19.
Zhao X, Qin Z, Liu W, Liu X, Moussian B, Ma E
. Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria. Insect Biochem Mol Biol. 2017; 92:1-11.
DOI: 10.1016/j.ibmb.2017.11.001.
View
20.
Carney G, Wade A, Sapra R, Goldstein E, Bender M
. DHR3, an ecdysone-inducible early-late gene encoding a Drosophila nuclear receptor, is required for embryogenesis. Proc Natl Acad Sci U S A. 1997; 94(22):12024-9.
PMC: 23691.
DOI: 10.1073/pnas.94.22.12024.
View