» Articles » PMID: 37364054

Nanoscale β-TCP-Laden GelMA/PCL Composite Membrane for Guided Bone Regeneration

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Major advances in the field of periodontal tissue engineering have favored the fabrication of biodegradable membranes with tunable physical and biological properties for guided bone regeneration (GBR). Herein, we engineered innovative nanoscale beta-tricalcium phosphate (β-TCP)-laden gelatin methacryloyl/polycaprolactone (GelMA/PCL-TCP) photocrosslinkable composite fibrous membranes via electrospinning. Chemo-morphological findings showed that the composite microfibers had a uniform porous network and β-TCP particles successfully integrated within the fibers. Compared with pure PCL and GelMA/PCL, GelMA/PCL-TCP membranes led to increased cell attachment, proliferation, mineralization, and osteogenic gene expression in alveolar bone-derived mesenchymal stem cells (aBMSCs). Moreover, our GelMA/PCL-TCP membrane was able to promote robust bone regeneration in rat calvarial critical-size defects, showing remarkable osteogenesis compared to PCL and GelMA/PCL groups. Altogether, the GelMA/PCL-TCP composite fibrous membrane promoted osteogenic differentiation of aBMSCs in vitro and pronounced bone formation in vivo. Our data confirmed that the electrospun GelMA/PCL-TCP composite has a strong potential as a promising membrane for guided bone regeneration.

Citing Articles

Melt electrowriting of bioglass-laden poly(ε-caprolactone) scaffolds for bone regeneration.

de Carvalho A, Cardoso L, Anselmi C, Dal-Fabbro R, Campos T, Borges A J Mater Chem B. 2025; .

PMID: 39992649 PMC: 11849773. DOI: 10.1039/d4tb02835j.


Niche-inspired collagen infused melt electrowritten scaffolds for craniofacial bone regeneration.

Daghrery A, Dal-Fabbro R, Xu J, Kaigler D, de Ruijter M, Gawlitta D Biomater Adv. 2025; 170:214222.

PMID: 39923603 PMC: 11893008. DOI: 10.1016/j.bioadv.2025.214222.


Metronidazole-laden silk fibroin methacrylated scaffolds for managing periapical lesions.

Silverberg A, Cardoso L, de Carvalho A, Dos Reis-Prado A, Fenno J, Dal-Fabbro R Odontology. 2024; .

PMID: 39523223 DOI: 10.1007/s10266-024-01023-y.


Personalized bioceramic grafts for craniomaxillofacial bone regeneration.

de Carvalho A, Rahimnejad M, Oliveira R, Sikder P, Saavedra G, Bhaduri S Int J Oral Sci. 2024; 16(1):62.

PMID: 39482290 PMC: 11528123. DOI: 10.1038/s41368-024-00327-7.


Development of Cerium Oxide-Laden GelMA/PCL Scaffolds for Periodontal Tissue Engineering.

Aminmansour S, Cardoso L, Anselmi C, de Carvalho A, Rahimnejad M, Bottino M Materials (Basel). 2024; 17(16).

PMID: 39203082 PMC: 11355598. DOI: 10.3390/ma17163904.


References
1.
Sasaki J, Abe G, Li A, Thongthai P, Tsuboi R, Kohno T . Barrier membranes for tissue regeneration in dentistry. Biomater Investig Dent. 2021; 8(1):54-63. PMC: 8158285. DOI: 10.1080/26415275.2021.1925556. View

2.
Fujihara K, Kotaki M, Ramakrishna S . Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials. 2005; 26(19):4139-47. DOI: 10.1016/j.biomaterials.2004.09.014. View

3.
Siqueira L, Passador F, Costa M, Lobo A, Sousa E . Influence of the addition of β-TCP on the morphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning. Mater Sci Eng C Mater Biol Appl. 2015; 52:135-43. DOI: 10.1016/j.msec.2015.03.055. View

4.
Chu C, Zhao X, Rung S, Xiao W, Liu L, Qu Y . Application of biomaterials in periodontal tissue repair and reconstruction in the presence of inflammation under periodontitis through the foreign body response: Recent progress and perspectives. J Biomed Mater Res B Appl Biomater. 2021; 110(1):7-17. DOI: 10.1002/jbm.b.34891. View

5.
Bordini E, Ferreira J, Dubey N, Ribeiro J, de Souza Costa C, Soares D . Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments. ACS Appl Bio Mater. 2022; 4(9):6993-7006. DOI: 10.1021/acsabm.1c00620. View