» Articles » PMID: 37352340

Structural Pseudocapacitors with Reinforced Interfaces to Increase Multifunctional Efficiency

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2023 Jun 23
PMID 37352340
Authors
Affiliations
Soon will be listed here.
Abstract

Structural supercapacitors hold promise to expand the energy capacity of a system by integrating load-bearing and energy-storage functions in a multifunctional structure, resulting in weight savings and safety improvements. Here, we develop strategies based on interfacial engineering to advance multifunctional efficiency. The structural electrodes were reinforced by coating carbon-fiber weaves with a uniquely stable conjugated redox polymer and reduced graphene oxide that raised pseudocapacitive capacitance and tensile strength. The solid polymer electrolyte was tuned to a gradient configuration, where it facilitated high ionic conductivity at the electrode-electrolyte interfaces and transitioned to a composition with high mechanical strength in the bulk for load support. The gradient design enabled the multilayer structural supercapacitors to reach state-of-the-art performance matching the level of monofunctional supercapacitors. In situ electrochemical-mechanical measurements established the device durability under mechanical loads. The structural supercapacitor was made into the hull of a model boat to demonstrate its multifunctionality.

Citing Articles

Robust and High-Wettability Cellulose Separators with Molecule-Reassembled Nano-Cracked Structures for High-Performance Supercapacitors.

Wang X, Zheng W, Zhao H, Li J, Chen S, Xu F Nanomicro Lett. 2025; 17(1):153.

PMID: 39969701 PMC: 11839970. DOI: 10.1007/s40820-025-01650-2.


Polymer Electrolytes for Supercapacitors.

Chen X, Holze R Polymers (Basel). 2024; 16(22).

PMID: 39599254 PMC: 11598227. DOI: 10.3390/polym16223164.


Multifunctionality Analysis of Structural Supercapacitors- A Review.

Zschiebsch W, Sturm Y, Kucher M, Hedayati D, Behnisch T, Modler N Materials (Basel). 2024; 17(3).

PMID: 38591598 PMC: 10856288. DOI: 10.3390/ma17030739.


Zinc-copper dual-ion electrolytes to suppress dendritic growth and increase anode utilization in zinc ion capacitors.

Shin C, Yao L, Jeong S, Ng T Sci Adv. 2024; 10(1):eadf9951.

PMID: 38170781 PMC: 10796115. DOI: 10.1126/sciadv.adf9951.

References
1.
Wang H, Diao Y, Lu Y, Yang H, Zhou Q, Chrulski K . Energy storing bricks for stationary PEDOT supercapacitors. Nat Commun. 2020; 11(1):3882. PMC: 7419536. DOI: 10.1038/s41467-020-17708-1. View

2.
Lu L, Lu Y, Zhu Z, Shao J, Yao H, Wang S . Extremely fast-charging lithium ion battery enabled by dual-gradient structure design. Sci Adv. 2022; 8(17):eabm6624. PMC: 9054020. DOI: 10.1126/sciadv.abm6624. View

3.
Simon P, Gogotsi Y, Dunn B . Materials science. Where do batteries end and supercapacitors begin?. Science. 2014; 343(6176):1210-1. DOI: 10.1126/science.1249625. View

4.
Kwon S, Kim T, Jung B, Lee S, Choi U . Multifunctional Epoxy-Based Solid Polymer Electrolytes for Solid-State Supercapacitors. ACS Appl Mater Interfaces. 2018; 10(41):35108-35117. DOI: 10.1021/acsami.8b11016. View

5.
Qian H, Kucernak A, Greenhalgh E, Bismarck A, Shaffer M . Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric. ACS Appl Mater Interfaces. 2013; 5(13):6113-22. DOI: 10.1021/am400947j. View