» Articles » PMID: 37350966

Incorporating Lesion-to-lesion Heterogeneity into Early Oncology Decision Making

Overview
Journal Front Immunol
Date 2023 Jun 23
PMID 37350966
Authors
Affiliations
Soon will be listed here.
Abstract

RECISTv1.1 (Response Evaluation Criteria In Solid Tumors) is the most commonly used response grading criteria in early oncology trials. In this perspective, we argue that RECISTv1.1 is ambiguous regarding lesion-to-lesion variation that can introduce bias in decision making. We show theoretical examples of how lesion-to-lesion variability causes bias in RECISTv1.1, leading to misclassification of patient response. Next, we review immune checkpoint inhibitor (ICI) clinical trial data and find that lesion-to-lesion heterogeneity is widespread in ICI-treated patients. We illustrate the implications of ignoring lesion-to-lesion heterogeneity in interpreting biomarker data, selecting treatments for patients with progressive disease, and go/no-go decisions in drug development. Further, we propose that Quantitative Systems Pharmacology (QSP) models can aid in developing better metrics of patient response and treatment efficacy by capturing patient responses robustly by considering lesion-to-lesion heterogeneity. Overall, we believe patient response evaluation with an appreciation of lesion-to-lesion heterogeneity can potentially improve decision-making at the early stage of oncology drug development and benefit patient care.

Citing Articles

Dissection of Progressive Disease Patterns for a Modified Classification for Immunotherapy.

Saal J, Eckstein M, Ritter M, Brossart P, Luetkens J, Ellinger J JAMA Oncol. 2024; 11(2):154-161.

PMID: 39724246 PMC: 11843377. DOI: 10.1001/jamaoncol.2024.5672.


An integrated quantitative systems pharmacology virtual population approach for calibration with oncology efficacy endpoints.

Braniff N, Joshi T, Cassidy T, Trogdon M, Kumar R, Poels K CPT Pharmacometrics Syst Pharmacol. 2024; 14(2):268-278.

PMID: 39508122 PMC: 11812934. DOI: 10.1002/psp4.13270.


Virtual patient analysis identifies strategies to improve the performance of predictive biomarkers for PD-1 blockade.

Arulraj T, Wang H, Deshpande A, Varadhan R, Emens L, Jaffee E Proc Natl Acad Sci U S A. 2024; 121(45):e2410911121.

PMID: 39467131 PMC: 11551325. DOI: 10.1073/pnas.2410911121.


Eliciting the antitumor immune response with a conditionally activated PD-L1 targeting antibody analyzed with a quantitative systems pharmacology model.

Ippolito A, Wang H, Zhang Y, Vakil V, Bazzazi H, Popel A CPT Pharmacometrics Syst Pharmacol. 2023; 13(1):93-105.

PMID: 38058278 PMC: 10787208. DOI: 10.1002/psp4.13060.

References
1.
Eisenhauer E, Therasse P, Bogaerts J, Schwartz L, Sargent D, Ford R . New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2008; 45(2):228-47. DOI: 10.1016/j.ejca.2008.10.026. View

2.
Arance A, de la Cruz-Merino L, Petrella T, Jamal R, Ny L, Carneiro A . Phase II LEAP-004 Study of Lenvatinib Plus Pembrolizumab for Melanoma With Confirmed Progression on a Programmed Cell Death Protein-1 or Programmed Death Ligand 1 Inhibitor Given as Monotherapy or in Combination. J Clin Oncol. 2022; 41(1):75-85. DOI: 10.1200/JCO.22.00221. View

3.
Zhou J, Liu Y, Zhang Y, Li Q, Cao Y . Modeling Tumor Evolutionary Dynamics to Predict Clinical Outcomes for Patients with Metastatic Colorectal Cancer: A Retrospective Analysis. Cancer Res. 2019; 80(3):591-601. PMC: 7002273. DOI: 10.1158/0008-5472.CAN-19-1940. View

4.
Butner J, Wang Z, Elganainy D, Al Feghali K, Plodinec M, Calin G . A mathematical model for the quantification of a patient's sensitivity to checkpoint inhibitors and long-term tumour burden. Nat Biomed Eng. 2021; 5(4):297-308. PMC: 8669771. DOI: 10.1038/s41551-020-00662-0. View

5.
Kumar R, Thiagarajan K, Jagannathan L, Liu L, Mayawala K, de Alwis D . Beyond the single average tumor: Understanding IO combinations using a clinical QSP model that incorporates heterogeneity in patient response. CPT Pharmacometrics Syst Pharmacol. 2021; 10(7):684-695. PMC: 8302246. DOI: 10.1002/psp4.12637. View