» Articles » PMID: 37342219

Cell Transplantation Therapies for Spinal Cord Injury Focusing on Bone Marrow Mesenchymal Stem Cells: Advances and Challenges

Overview
Date 2023 Jun 21
PMID 37342219
Authors
Affiliations
Soon will be listed here.
Abstract

Spinal cord injury (SCI) is a devastating condition with complex pathological mechanisms that lead to sensory, motor, and autonomic dysfunction below the site of injury. To date, no effective therapy is available for the treatment of SCI. Recently, bone marrow-derived mesenchymal stem cells (BMMSCs) have been considered to be the most promising source for cellular therapies following SCI. The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI. In this work, we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects: Neuroprotection, axon sprouting and/or regeneration, myelin regeneration, inhibitory microenvironments, glial scar formation, immunomodulation, and angiogenesis. Additionally, we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models.

Citing Articles

Bone marrow mesenchymal stem cells modulate miR-202-3p to suppress neuronal apoptosis following spinal cord injury through autophagy activation via the AMPK, MAPK, and PI3K/AKT/mTOR signaling pathway.

Huang K, Fang J, Sun W, Zeng Y, Shi B, Ren B Sci Rep. 2024; 14(1):30099.

PMID: 39627300 PMC: 11615303. DOI: 10.1038/s41598-024-81332-y.


Bilobalide Activates Autophagy and Enhances the Efficacy of Bone Marrow Mesenchymal Stem Cells on Spinal Cord Injury Via Upregulating FMRP to Promote WNK1 mRNA Decay.

Chen M, Xu G, Guo W, Lin Y, Yao Z Neurochem Res. 2024; 50(1):33.

PMID: 39601946 DOI: 10.1007/s11064-024-04287-6.


Combination of Adult Mesenchymal Stem Cell Therapy and Immunomodulation with Dimethyl Fumarate Following Spinal Cord Ventral Root Repair.

Gelinski Kempe P, Castro M, Coser L, Cartarozzi L, Barraviera B, Ferreira Jr R Biology (Basel). 2024; 13(11).

PMID: 39596908 PMC: 11591889. DOI: 10.3390/biology13110953.


Repair of spinal cord injury by bone marrow mesenchymal stem cell-derived exosomes: a systematic review and meta-analysis based on rat models.

Ye Z, Zheng Y, Li N, Zhang H, Li Q, Wang X Front Mol Neurosci. 2024; 17:1448777.

PMID: 39169950 PMC: 11335736. DOI: 10.3389/fnmol.2024.1448777.


Development of Combinatorial Therapeutics for Spinal Cord Injury using Stem Cell Delivery.

Baek I, Song Y J Vis Exp. 2024; (208).

PMID: 38912769 PMC: 11292835. DOI: 10.3791/66872.

References
1.
Ogle M, Doron G, Levy M, Temenoff J . Hydrogel Culture Surface Stiffness Modulates Mesenchymal Stromal Cell Secretome and Alters Senescence. Tissue Eng Part A. 2020; 26(23-24):1259-1271. DOI: 10.1089/ten.tea.2020.0030. View

2.
Gao X, Han Z, Huang C, Lei H, Li G, Chen L . An anti-inflammatory and neuroprotective biomimetic nanoplatform for repairing spinal cord injury. Bioact Mater. 2022; 18:569-582. PMC: 9256979. DOI: 10.1016/j.bioactmat.2022.05.026. View

3.
Tator C, Fehlings M . Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991; 75(1):15-26. DOI: 10.3171/jns.1991.75.1.0015. View

4.
Susarla B, Laing E, Yu P, Katagiri Y, Geller H, Symes A . Smad proteins differentially regulate transforming growth factor-β-mediated induction of chondroitin sulfate proteoglycans. J Neurochem. 2011; 119(4):868-78. PMC: 3197872. DOI: 10.1111/j.1471-4159.2011.07470.x. View

5.
Sykova E, Homola A, Mazanec R, Lachmann H, Konradova S, Kobylka P . Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2007; 15(8-9):675-87. DOI: 10.3727/000000006783464381. View