» Articles » PMID: 37341451

DNA-AgNC Loaded Liposomes for Measuring Cerebral Blood Flow Using Two-Photon Fluorescence Correlation Spectroscopy

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2023 Jun 21
PMID 37341451
Authors
Affiliations
Soon will be listed here.
Abstract

Unraveling the transport of drugs and nanocarriers in cerebrovascular networks is important for pharmacokinetic and hemodynamic studies but is challenging due to the complexity of sensing individual particles within the circulatory system of a live animal. Here, we demonstrate that a DNA-stabilized silver nanocluster (DNA-AgNC) that emits in the first near-infrared window upon two-photon excitation in the second NIR window can be used for multiphoton fluorescence correlation spectroscopy for the measurement of cerebral blood flow rates in live mice with high spatial and temporal resolution. To ensure bright and stable emission during experiments, we loaded DNA-AgNCs into liposomes, which served the dual purposes of concentrating the fluorescent label and protecting it from degradation. DNA-AgNC-loaded liposomes enabled the quantification of cerebral blood flow velocities within individual vessels of a living mouse.

Citing Articles

Revisiting Anti-Stokes Emission Features of DNA-Stabilized Silver Nanoclusters.

Liisberg M, Romolini G, Ruck V, Cerretani C, Vosch T ACS Omega. 2025; 10(8):8652-8657.

PMID: 40060843 PMC: 11886910. DOI: 10.1021/acsomega.4c11384.


Recent Advances of Strategies and Applications in Aptamer-Combined Metal Nanocluster Biosensing Systems.

Kim K, Kim S, Yoo S Biosensors (Basel). 2024; 14(12).

PMID: 39727889 PMC: 11675020. DOI: 10.3390/bios14120625.


Two-photon brightness of NIR-emitting, atomically precise DNA-stabilized silver nanoclusters.

Hajda A, Guha R, Copp S, Olesiak-Banska J Chem Sci. 2024; 16(4):1737-1745.

PMID: 39720144 PMC: 11664824. DOI: 10.1039/d4sc05853d.


Multi-Objective Design of DNA-Stabilized Nanoclusters Using Variational Autoencoders With Automatic Feature Extraction.

Sadeghi E, Mastracco P, Gonzalez-Rosell A, Copp S, Bogdanov P ACS Nano. 2024; 18(39):26997-27008.

PMID: 39288200 PMC: 11447918. DOI: 10.1021/acsnano.4c09640.


An Atom-Precise Understanding of DNA-Stabilized Silver Nanoclusters.

Gonzalez-Rosell A, Copp S Acc Chem Res. 2024; 57(15):2117-2129.

PMID: 38995323 PMC: 11308368. DOI: 10.1021/acs.accounts.4c00256.


References
1.
Lin X, Zhao T, Xiong W, Wen S, Jin X, Xu X . Imaging Neural Activity in the Primary Somatosensory Cortex Using Thy1-GCaMP6s Transgenic Mice. J Vis Exp. 2019; (143). PMC: 6903399. DOI: 10.3791/56297. View

2.
Goh W, Zou S, Ong W, Torta F, Alexandra A, Schiffelers R . Bioinspired Cell-Derived Nanovesicles versus Exosomes as Drug Delivery Systems: a Cost-Effective Alternative. Sci Rep. 2017; 7(1):14322. PMC: 5662560. DOI: 10.1038/s41598-017-14725-x. View

3.
Liu S, Yan Q, Cao S, Wang L, Luo S, Lv M . Inhibition of Bacteria In Vitro and In Vivo by Self-Assembled DNA-Silver Nanocluster Structures. ACS Appl Mater Interfaces. 2022; 14(37):41809-41818. DOI: 10.1021/acsami.2c13805. View

4.
Kunst B, Schots A, Visser A . Detection of flowing fluorescent particles in a microcapillary using fluorescence correlation spectroscopy. Anal Chem. 2002; 74(20):5350-7. DOI: 10.1021/ac0256742. View

5.
Bogh S, Carro-Temboury M, Cerretani C, Swasey S, Copp S, Gwinn E . Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster. Methods Appl Fluoresc. 2018; 6(2):024004. DOI: 10.1088/2050-6120/aaa8bc. View