» Articles » PMID: 37337105

Transcriptomic Classes of BCR-ABL1 Lymphoblastic Leukemia

Abstract

In BCR-ABL1 lymphoblastic leukemia, treatment heterogeneity to tyrosine kinase inhibitors (TKIs), especially in the absence of kinase domain mutations in BCR-ABL1, is poorly understood. Through deep molecular profiling, we uncovered three transcriptomic subtypes of BCR-ABL1 lymphoblastic leukemia, each representing a maturation arrest at a stage of B-cell progenitor differentiation. An earlier arrest was associated with lineage promiscuity, treatment refractoriness and poor patient outcomes. A later arrest was associated with lineage fidelity, durable leukemia remissions and improved patient outcomes. Each maturation arrest was marked by specific genomic events that control different transition points in B-cell development. Interestingly, these events were absent in BCR-ABL1 preleukemic stem cells isolated from patients regardless of subtype, which supports that transcriptomic phenotypes are determined downstream of the leukemia-initialing event. Overall, our data indicate that treatment response and TKI efficacy are unexpected outcomes of the differentiation stage at which this leukemia transforms.

Citing Articles

Comprehensive Analysis of High-Sensitive Flow Cytometry and Molecular Mensurable Residual Disease in Philadelphia Chromosome-Positive Acute Leukemia.

de Azambuja A, Mion A, Schluga Y, Beltrame M, Senegaglia A, Funke V Int J Mol Sci. 2025; 26(5).

PMID: 40076750 PMC: 11900146. DOI: 10.3390/ijms26052116.


Molecular and pharmacological heterogeneity of ETV6::RUNX1 acute lymphoblastic leukemia.

Li Z, Zhao H, Yang W, Maillard M, Yoshimura S, Hsiao Y Nat Commun. 2025; 16(1):1153.

PMID: 39880832 PMC: 11779914. DOI: 10.1038/s41467-025-56229-7.


M&M: an RNA-seq based pan-cancer classifier for paediatric tumours.

Wallis F, Baker-Hernandez J, van Tuil M, van Hamersveld C, Koudijs M, Verwiel E EBioMedicine. 2024; 111:105506.

PMID: 39709770 PMC: 11784659. DOI: 10.1016/j.ebiom.2024.105506.


Unraveling the Genetic Heterogeneity of Acute Lymphoblastic Leukemia Based on NGS Applications.

Ramirez Maldonado V, Navas Acosta J, Maldonado Marcos I, Villaverde Ramiro A, Hernandez-Sanchez A, Hernandez Rivas J Cancers (Basel). 2024; 16(23).

PMID: 39682152 PMC: 11639785. DOI: 10.3390/cancers16233965.


Heterogeneity of IKZF1 genomic alterations and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia.

Mullighan C, Wangondu R, Ashcraft E, Chang T, Roberts K, Brady S Res Sq. 2024; .

PMID: 39606455 PMC: 11601832. DOI: 10.21203/rs.3.rs-5292018/v1.


References
1.
Wilkerson M, Hayes D . ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010; 26(12):1572-3. PMC: 2881355. DOI: 10.1093/bioinformatics/btq170. View

2.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A . The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20(9):1297-303. PMC: 2928508. DOI: 10.1101/gr.107524.110. View

3.
Alexander T, Gu Z, Iacobucci I, Dickerson K, Choi J, Xu B . The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018; 562(7727):373-379. PMC: 6195459. DOI: 10.1038/s41586-018-0436-0. View

4.
Churchman M, Low J, Qu C, Paietta E, Kasper L, Chang Y . Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell. 2015; 28(3):343-56. PMC: 4573904. DOI: 10.1016/j.ccell.2015.07.016. View

5.
Dobin A, Davis C, Schlesinger F, Drenkow J, Zaleski C, Jha S . STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2012; 29(1):15-21. PMC: 3530905. DOI: 10.1093/bioinformatics/bts635. View