6.
Jeffcoate W, Vileikyte L, Boyko E, Armstrong D, Boulton A
. Current Challenges and Opportunities in the Prevention and Management of Diabetic Foot Ulcers. Diabetes Care. 2018; 41(4):645-652.
DOI: 10.2337/dc17-1836.
View
7.
Liu M
. A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines (Basel). 2019; 7(2).
PMC: 6631684.
DOI: 10.3390/vaccines7020037.
View
8.
Blakytny R, Jude E
. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006; 23(6):594-608.
DOI: 10.1111/j.1464-5491.2006.01773.x.
View
9.
FREEDBERG I, Tomic-Canic M, Komine M, Blumenberg M
. Keratins and the keratinocyte activation cycle. J Invest Dermatol. 2001; 116(5):633-40.
DOI: 10.1046/j.1523-1747.2001.01327.x.
View
10.
Grek C, Prasad G, Viswanathan V, Armstrong D, Gourdie R, Ghatnekar G
. Topical administration of a connexin43-based peptide augments healing of chronic neuropathic diabetic foot ulcers: A multicenter, randomized trial. Wound Repair Regen. 2015; 23(2):203-12.
PMC: 4472499.
DOI: 10.1111/wrr.12275.
View
11.
Serra M, Barroso W, da Silva N, Silva S, Borges A, Abreu I
. From Inflammation to Current and Alternative Therapies Involved in Wound Healing. Int J Inflam. 2017; 2017:3406215.
PMC: 5547704.
DOI: 10.1155/2017/3406215.
View
12.
Buikema K, Meyerle J
. Amputation stump: Privileged harbor for infections, tumors, and immune disorders. Clin Dermatol. 2014; 32(5):670-7.
DOI: 10.1016/j.clindermatol.2014.04.015.
View
13.
Sen C
. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv Wound Care (New Rochelle). 2021; 10(5):281-292.
PMC: 8024242.
DOI: 10.1089/wound.2021.0026.
View
14.
Lane K, Abusamaan M, Voss B, Thurber E, Al-Hajri N, Gopakumar S
. Glycemic control and diabetic foot ulcer outcomes: A systematic review and meta-analysis of observational studies. J Diabetes Complications. 2020; 34(10):107638.
PMC: 7721205.
DOI: 10.1016/j.jdiacomp.2020.107638.
View
15.
Darwin E, Tomic-Canic M
. Healing Chronic Wounds: Current Challenges and Potential Solutions. Curr Dermatol Rep. 2019; 7(4):296-302.
PMC: 6585977.
DOI: 10.1007/s13671-018-0239-4.
View
16.
Truzzi E, Leite Nascimento T, Iannuccelli V, Costantino L, Lima E, Leo E
. In Vivo Biodistribution of Respirable Solid Lipid Nanoparticles Surface-Decorated with a Mannose-Based Surfactant: A Promising Tool for Pulmonary Tuberculosis Treatment?. Nanomaterials (Basel). 2020; 10(3).
PMC: 7153707.
DOI: 10.3390/nano10030568.
View
17.
Alrdahe S, Al Sadoun H, Torbica T, Mckenzie E, Bowling F, Boulton A
. Dysregulation of macrophage development and phenotype in diabetic human macrophages can be rescued by Hoxa3 protein transduction. PLoS One. 2019; 14(10):e0223980.
PMC: 6799902.
DOI: 10.1371/journal.pone.0223980.
View
18.
Zelen C, Serena T, Gould L, Le L, Carter M, Keller J
. Treatment of chronic diabetic lower extremity ulcers with advanced therapies: a prospective, randomised, controlled, multi-centre comparative study examining clinical efficacy and cost. Int Wound J. 2015; 13(2):272-82.
PMC: 7949818.
DOI: 10.1111/iwj.12566.
View
19.
Lee J, Shieh J, Zhang J, Liu L, Zhang Y, Eom J
. Improved ex vivo expansion of adult hematopoietic stem cells by overcoming CUL4-mediated degradation of HOXB4. Blood. 2013; 121(20):4082-9.
PMC: 3656448.
DOI: 10.1182/blood-2012-09-455204.
View
20.
Mahdipour E, Charnock J, Mace K
. Hoxa3 promotes the differentiation of hematopoietic progenitor cells into proangiogenic Gr-1+CD11b+ myeloid cells. Blood. 2010; 117(3):815-26.
DOI: 10.1182/blood-2009-12-259549.
View