» Articles » PMID: 37332990

Mitoepigenetics and Gliomas: Epigenetic Alterations to Mitochondrial DNA and Nuclear DNA Alter MtDNA Expression and Contribute to Glioma Pathogenicity

Overview
Journal Front Neurol
Specialty Neurology
Date 2023 Jun 19
PMID 37332990
Authors
Affiliations
Soon will be listed here.
Abstract

Epigenetic mechanisms allow cells to fine-tune gene expression in response to environmental stimuli. For decades, it has been known that mitochondria have genetic material. Still, only recently have studies shown that epigenetic factors regulate mitochondrial DNA (mtDNA) gene expression. Mitochondria regulate cellular proliferation, apoptosis, and energy metabolism, all critical areas of dysfunction in gliomas. Methylation of mtDNA, alterations in mtDNA packaging via mitochondrial transcription factor A (TFAM), and regulation of mtDNA transcription via the micro-RNAs (mir 23-b) and long noncoding RNAs [RNA mitochondrial RNA processing (RMRP)] have all been identified as contributing to glioma pathogenicity. Developing new interventions interfering with these pathways may improve glioma therapy.

Citing Articles

Mitochondrial DNA copy number alterations: Key players in the complexity of glioblastoma (Review).

Yusoff A, Mohd Khair S, Abd Radzak S Mol Med Rep. 2025; 31(3).

PMID: 39886971 PMC: 11795256. DOI: 10.3892/mmr.2025.13443.


Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024).

Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L Front Oncol. 2024; 14:1431636.

PMID: 39534093 PMC: 11555291. DOI: 10.3389/fonc.2024.1431636.


Analysis of DNA Methylation in Gliomas: Assessment of Preanalytical Variables.

Bomsztyk K, Mar D, Denisenko O, Powell S, Vishnoi M, Yin Z Lab Invest. 2024; 104(12):102160.

PMID: 39426568 PMC: 11709230. DOI: 10.1016/j.labinv.2024.102160.


Expression, Prognostic Value, and Biological Function of CTHRC1 in Different Types of Gliomas: A Bioinformatic Analysis and Experiment Validation.

Shi X, Zeng X, Jiao R, Yang Y, Du X, Qian J Clin Med Insights Oncol. 2024; 18:11795549241260576.

PMID: 38894702 PMC: 11185027. DOI: 10.1177/11795549241260576.


Brain development and bioenergetic changes.

Rajan A, Fame R Neurobiol Dis. 2024; 199:106550.

PMID: 38849103 PMC: 11495523. DOI: 10.1016/j.nbd.2024.106550.


References
1.
Chen X, Li S, Ke Y, Wu S, Huang T, Hu W . KLF16 suppresses human glioma cell proliferation and tumourigenicity by targeting TFAM. Artif Cells Nanomed Biotechnol. 2018; 46(sup1):608-615. DOI: 10.1080/21691401.2018.1431654. View

2.
Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor K . Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell. 2017; 32(4):520-537.e5. PMC: 5637314. DOI: 10.1016/j.ccell.2017.08.017. View

3.
Porporato P, Filigheddu N, Bravo-San Pedro J, Kroemer G, Galluzzi L . Mitochondrial metabolism and cancer. Cell Res. 2017; 28(3):265-280. PMC: 5835768. DOI: 10.1038/cr.2017.155. View

4.
Klein K, He K, Younes A, Barsoumian H, Chen D, Ozgen T . Role of Mitochondria in Cancer Immune Evasion and Potential Therapeutic Approaches. Front Immunol. 2020; 11:573326. PMC: 7596324. DOI: 10.3389/fimmu.2020.573326. View

5.
Wang G, Wang J, To T, Zhao H, Wang J . Role of SIRT1-mediated mitochondrial and Akt pathways in glioblastoma cell death induced by Cotinus coggygria flavonoid nanoliposomes. Int J Nanomedicine. 2015; 10:5005-23. PMC: 4531020. DOI: 10.2147/IJN.S82282. View