» Articles » PMID: 37316537

Arylcarboxylation of Unactivated Alkenes with CO Via Visible-light Photoredox Catalysis

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Jun 14
PMID 37316537
Authors
Affiliations
Soon will be listed here.
Abstract

Photocatalytic carboxylation of alkenes with CO is a promising and sustainable strategy to synthesize high value-added carboxylic acids. However, it is challenging and rarely investigated for unactivated alkenes due to their low reactivities. Herein, we report a visible-light photoredox-catalyzed arylcarboxylation of unactivated alkenes with CO, delivering a variety of tetrahydronaphthalen-1-ylacetic acids, indan-1-ylacetic acids, indolin-3-ylacetic acids, chroman-4-ylacetic acids and thiochroman-4-ylacetic acids in moderate-to-good yields. This reaction features high chemo- and regio-selectivities, mild reaction conditions (1 atm, room temperature), broad substrate scope, good functional group compatibility, easy scalability and facile derivatization of products. Mechanistic studies indicate that in situ generation of carbon dioxide radical anion and following radical addition to unactivated alkenes might be involved in the process.

Citing Articles

Visible-Light-Driven Carboxylative 1,2-Difunctionalization of C=C Bonds with Tetrabutylammonium Oxalate.

Wang S, Xu P, Liu Z, Liu Y, Jiang H, Hao T ACS Cent Sci. 2025; 11(1):46-56.

PMID: 39866692 PMC: 11758224. DOI: 10.1021/acscentsci.4c01464.


γ-Butyrolactone Synthesis from Allylic Alcohols Using the CO Radical Anion.

Mangaonkar S, Hayashi H, Kanna W, Debbarma S, Harabuchi Y, Maeda S Precis Chem. 2024; 2(3):88-95.

PMID: 39474029 PMC: 11503668. DOI: 10.1021/prechem.3c00117.


Photocatalytic deuterocarboxylation of alkynes with oxalate.

Xu P, Jiang H, Xu H, Wang S, Jiang H, Zhu S Chem Sci. 2024; 15(32):13041-13048.

PMID: 39148785 PMC: 11323338. DOI: 10.1039/d4sc03586k.


Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes.

Zhang T, Rabeah J, Das S Nat Commun. 2024; 15(1):5208.

PMID: 38890327 PMC: 11189478. DOI: 10.1038/s41467-024-49514-4.

References
1.
Seo H, Katcher M, Jamison T . Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nat Chem. 2017; 9(5):453-456. PMC: 5407320. DOI: 10.1038/nchem.2690. View

2.
Liao L, Cao G, Jiang Y, Jin X, Hu X, Chruma J . α-Amino Acids and Peptides as Bifunctional Reagents: Carbocarboxylation of Activated Alkenes via Recycling CO. J Am Chem Soc. 2021; 143(7):2812-2821. DOI: 10.1021/jacs.0c11896. View

3.
Zhang J, Li Y, Zhang F, Hu C, Chen Y . Generation of Alkoxyl Radicals by Photoredox Catalysis Enables Selective C(sp(3))-H Functionalization under Mild Reaction Conditions. Angew Chem Int Ed Engl. 2015; 55(5):1872-5. DOI: 10.1002/anie.201510014. View

4.
Murata K, Numasawa N, Shimomaki K, Takaya J, Iwasawa N . Construction of a visible light-driven hydrocarboxylation cycle of alkenes by the combined use of Rh(i) and photoredox catalysts. Chem Commun (Camb). 2017; 53(21):3098-3101. DOI: 10.1039/c7cc00678k. View

5.
Wu Z, Ren R, Zhu C . Combination of a Cyano Migration Strategy and Alkene Difunctionalization: The Elusive Selective Azidocyanation of Unactivated Olefins. Angew Chem Int Ed Engl. 2016; 55(36):10821-4. DOI: 10.1002/anie.201605130. View