» Articles » PMID: 37309422

Improving Architectural Traits of Maize Inflorescences

Overview
Journal Mol Breed
Date 2023 Jun 13
PMID 37309422
Authors
Affiliations
Soon will be listed here.
Abstract

The domestication and improvement of maize resulted in radical changes in shoot architecture relative to its wild progenitor teosinte. In particular, critical modifications involved a reduction of branching and an increase in inflorescence size to meet the needs for human consumption and modern agricultural practices. Maize is a major contributor to global agricultural production by providing large and inexpensive quantities of food, animal feed, and ethanol. Maize is also a classic system for studying the genetic regulation of inflorescence formation and its enlarged female inflorescences directly influence seed production and yield. Studies on the molecular and genetic networks regulating meristem proliferation and maintenance, including receptor-ligand interactions, transcription factor regulation, and hormonal control, provide important insights into maize inflorescence development and reveal potential avenues for the targeted modification of specific architectural traits. In this review, we summarize recent findings on the molecular mechanisms controlling inflorescence formation and discuss how this knowledge can be applied to improve maize productivity in the face of present and future environmental challenges.

Citing Articles

Cross-species single-nucleus analysis reveals the potential role of whole-genome duplication in the evolution of maize flower development.

Feng H, Fan W, Liu M, Huang J, Li B, Sang Q BMC Genomics. 2025; 26(1):3.

PMID: 39754060 PMC: 11699695. DOI: 10.1186/s12864-024-11186-1.


MaizeCODE reveals bi-directionally expressed enhancers that harbor molecular signatures of maize domestication.

Cahn J, Regulski M, Lynn J, Ernst E, de Santis Alves C, Ramakrishnan S Nat Commun. 2024; 15(1):10854.

PMID: 39738013 PMC: 11685423. DOI: 10.1038/s41467-024-55195-w.


Bigger meristem, higher yield? The roles of REL2 and RELK in maize meristem function and yield enhancement.

Robil J, Tran T Plant Physiol. 2024; 197(1).

PMID: 39417678 PMC: 11663594. DOI: 10.1093/plphys/kiae552.


Genome-wide association study reveals 18 QTL for major agronomic traits in a Nordic-Baltic spring wheat germplasm.

Aleliunas A, Gorash A, Armoniene R, Tamm I, Ingver A, Bleidere M Front Plant Sci. 2024; 15:1393170.

PMID: 38974985 PMC: 11224466. DOI: 10.3389/fpls.2024.1393170.


() and () homologs share conserved roles in growth repression.

Gallagher J, Man J, Chiaramida A, Rozza I, Patterson E, Powell M Proc Natl Acad Sci U S A. 2023; 120(51):e2311961120.

PMID: 38096411 PMC: 10742383. DOI: 10.1073/pnas.2311961120.


References
1.
Knauer S, Javelle M, Li L, Li X, Ma X, Wimalanathan K . A high-resolution gene expression atlas links dedicated meristem genes to key architectural traits. Genome Res. 2019; 29(12):1962-1973. PMC: 6886502. DOI: 10.1101/gr.250878.119. View

2.
Zhou Y, Liu X, Engstrom E, Nimchuk Z, Pruneda-Paz J, Tarr P . Control of plant stem cell function by conserved interacting transcriptional regulators. Nature. 2014; 517(7534):377-80. PMC: 4297503. DOI: 10.1038/nature13853. View

3.
Xie M, Chen H, Huang L, ONeil R, Shokhirev M, Ecker J . A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat Commun. 2018; 9(1):1604. PMC: 5913131. DOI: 10.1038/s41467-018-03921-6. View

4.
Dong Z, Xu Z, Xu L, Galli M, Gallavotti A, Dooner H . mimics heat and drought stress and encodes a protoxylem-specific transcription factor in maize. Proc Natl Acad Sci U S A. 2020; 117(34):20908-20919. PMC: 7456077. DOI: 10.1073/pnas.2005014117. View

5.
Gaillochet C, Lohmann J . The never-ending story: from pluripotency to plant developmental plasticity. Development. 2015; 142(13):2237-49. PMC: 4510588. DOI: 10.1242/dev.117614. View