6.
Yamashita T, Shimada S, Guo W, Sato K, Kohmura E, Hayakawa T
. Cloning and functional expression of a brain peptide/histidine transporter. J Biol Chem. 1997; 272(15):10205-11.
DOI: 10.1074/jbc.272.15.10205.
View
7.
Hu Y, Xie Y, Keep R, Smith D
. Divergent developmental expression and function of the proton-coupled oligopeptide transporters PepT2 and PhT1 in regional brain slices of mouse and rat. J Neurochem. 2014; 129(6):955-65.
PMC: 4181614.
DOI: 10.1111/jnc.12687.
View
8.
Sakata K, Yamashita T, Maeda M, Moriyama Y, Shimada S, Tohyama M
. Cloning of a lymphatic peptide/histidine transporter. Biochem J. 2001; 356(Pt 1):53-60.
PMC: 1221811.
DOI: 10.1042/0264-6021:3560053.
View
9.
Shen H, Smith D, Keep R, Brosius 3rd F
. Immunolocalization of the proton-coupled oligopeptide transporter PEPT2 in developing rat brain. Mol Pharm. 2005; 1(4):248-56.
DOI: 10.1021/mp049944b.
View
10.
Takeuchi H, Suzuki M, Goto R, Tezuka K, Fuchs H, Ishiguro N
. Regional Differences in the Absolute Abundance of Transporters, Receptors and Tight Junction Molecules at the Blood-Arachnoid Barrier and Blood-Spinal Cord Barrier among Cervical, Thoracic and Lumbar Spines in Dogs. Pharm Res. 2022; 39(7):1393-1413.
DOI: 10.1007/s11095-022-03275-1.
View
11.
Uchida Y, Goto R, Takeuchi H, Luczak M, Usui T, Tachikawa M
. Abundant Expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1, and xCT Transporters in Blood-Arachnoid Barrier of Pig and Polarized Localizations at CSF- and Blood-Facing Plasma Membranes. Drug Metab Dispos. 2019; 48(2):135-145.
DOI: 10.1124/dmd.119.089516.
View
12.
Vanlandewijck M, He L, Mae M, Andrae J, Ando K, Del Gaudio F
. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 2018; 554(7693):475-480.
DOI: 10.1038/nature25739.
View
13.
Kugler A, Olson S, Smith D
. Disposition of quinapril and quinaprilat in the isolated perfused rat kidney. J Pharmacokinet Biopharm. 1995; 23(3):287-305.
DOI: 10.1007/BF02354286.
View
14.
Lepsy C, Guttendorf R, Kugler A, Smith D
. Effects of organic anion, organic cation, and dipeptide transport inhibitors on cefdinir in the isolated perfused rat kidney. Antimicrob Agents Chemother. 2003; 47(2):689-96.
PMC: 151749.
DOI: 10.1128/AAC.47.2.689-696.2003.
View
15.
Rodriguez C, Smith D
. Influence of the unbound concentration of cefonicid on its renal elimination in isolated perfused rat kidneys. Antimicrob Agents Chemother. 1991; 35(11):2395-400.
PMC: 245391.
DOI: 10.1128/AAC.35.11.2395.
View
16.
Spector R, Johanson C
. The mammalian choroid plexus. Sci Am. 1989; 261(5):68-74.
DOI: 10.1038/scientificamerican1189-68.
View
17.
Ghersi-Egea J, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B
. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018; 135(3):337-361.
DOI: 10.1007/s00401-018-1807-1.
View
18.
Novotny A, Xiang J, Stummer W, Teuscher N, Smith D, Keep R
. Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. J Neurochem. 2000; 75(1):321-8.
DOI: 10.1046/j.1471-4159.2000.0750321.x.
View
19.
Hu Y, Ocheltree S, Xiang J, Keep R, Smith D
. Glycyl-L-glutamine disposition in rat choroid plexus epithelial cells in primary culture: role of PEPT2. Pharm Res. 2005; 22(8):1281-6.
DOI: 10.1007/s11095-005-5261-0.
View
20.
Ocheltree S, Shen H, Hu Y, Xiang J, Keep R, Smith D
. Role of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: studies in wild-type and null mice. Pharm Res. 2004; 21(9):1680-5.
DOI: 10.1023/b:pham.0000041465.89254.05.
View