Preparation of Nanocomposites for Antibacterial Orthodontic Invisible Appliance Based on Piezoelectric Catalysis
Overview
Authors
Affiliations
Compared to fixed orthodontic appliances with brackets, thermoplastic invisible orthodontic aligners offer several advantages, such as high aesthetic performance, good comfort, and convenient oral health maintenance, and are widely used in orthodontic fields. However, prolonged use of thermoplastic invisible aligners may lead to demineralization and even caries in most patients' teeth, as they enclose the tooth surface for an extended period. To address this issue, we have created PETG composites that contain piezoelectric barium titanate nanoparticles (BaTiONPs) to obtain antibacterial properties. First, we prepared piezoelectric composites by incorporating varying amounts of BaTiONPs into PETG matrix material. The composites were then characterized using techniques such as SEM, XRD, and Raman spectroscopy, which confirmed the successful synthesis of the composites. We cultivated biofilms of () on the surface of the nanocomposites under both polarized and unpolarized conditions. We then activated piezoelectric charges by subjecting the nanocomposites to 10 Hz cyclic mechanical vibration. The interactions between the biofilms and materials were evaluated by measuring the biofilm biomass. The addition of piezoelectric nanoparticles had a noticeable antibacterial effect on both the unpolarized and polarized conditions. Under polarized conditions, nanocomposites demonstrated a greater antibacterial effect than under unpolarized conditions. Additionally, as the concentration of BaTiONPs increased, the antibacterial rate also increased, with the surface antibacterial rate reaching 67.39% (30 wt% BaTiONPs). These findings have the potential for application in wearable, invisible appliances to improve clinical services and reduce the need for cleaning methods.
Zeng K, Lin Y, Liu S, Wang Z, Guo L Mater Today Bio. 2025; 29:101288.
PMID: 40018432 PMC: 11866170. DOI: 10.1016/j.mtbio.2024.101288.
Cao J, Ma Q, Shi J, Wang X, Ye D, Liang J Pathogens. 2025; 14(2).
PMID: 40005488 PMC: 11858515. DOI: 10.3390/pathogens14020111.
Niu Q, Chen S, Bai R, Lu Y, Peng L, Han B iScience. 2024; 27(12):111458.
PMID: 39720528 PMC: 11667053. DOI: 10.1016/j.isci.2024.111458.
Yang T, Sa R, Wang F, Chen C, Zheng L Front Bioeng Biotechnol. 2024; 12:1473126.
PMID: 39359264 PMC: 11446108. DOI: 10.3389/fbioe.2024.1473126.