» Articles » PMID: 37299685

Tailoring Magnetite-Nanoparticle-Based Nanocarriers for Gene Delivery: Exploiting CRISPRa Potential in Reducing Conditions

Overview
Date 2023 Jun 10
PMID 37299685
Authors
Affiliations
Soon will be listed here.
Abstract

Gene delivery has emerged as a promising alternative to conventional treatment approaches, allowing for the manipulation of gene expression through gene insertion, deletion, or alteration. However, the susceptibility of gene delivery components to degradation and challenges associated with cell penetration necessitate the use of delivery vehicles for effective functional gene delivery. Nanostructured vehicles, such as iron oxide nanoparticles (IONs) including magnetite nanoparticles (MNPs), have demonstrated significant potential for gene delivery applications due to their chemical versatility, biocompatibility, and strong magnetization. In this study, we developed an ION-based delivery vehicle capable of releasing linearized nucleic acids (tDNA) under reducing conditions in various cell cultures. As a proof of concept, we immobilized a CRISPR activation (CRISPRa) sequence to overexpress the gene on MNPs functionalized with polyethylene glycol (PEG), 3-[(2-aminoethyl)dithio]propionic acid (AEDP), and a translocating protein (OmpA). The nucleic sequence (tDNA) was modified to include a terminal thiol group and was conjugated to AEDP's terminal thiol via a disulfide exchange reaction. Leveraging the natural sensitivity of the disulfide bridge, the cargo was released under reducing conditions. Physicochemical characterizations, including thermogravimetric analysis (TGA) and Fourier-transform infrared (FTIR) spectroscopy, confirmed the correct synthesis and functionalization of the MNP-based delivery carriers. The developed nanocarriers exhibited remarkable biocompatibility, as demonstrated by the hemocompatibility, platelet aggregation, and cytocompatibility assays using primary human astrocytes, rodent astrocytes, and human fibroblast cells. Furthermore, the nanocarriers enabled efficient cargo penetration, uptake, and endosomal escape, with minimal nucleofection. A preliminary functionality test using RT-qPCR revealed that the vehicle facilitated the timely release of CRISPRa vectors, resulting in a remarkable 130-fold overexpression of . We demonstrate the potential of the developed ION-based nanocarrier as a versatile and promising gene delivery vehicle with potential applications in gene therapy. The developed nanocarrier is capable of delivering any nucleic sequence (up to 8.2 kb) once it is thiolated using the methodology explained in this study. To our knowledge, this represents the first MNP-based nanocarrier capable of delivering nucleic sequences under specific reducing conditions while preserving functionality.

Citing Articles

Enhanced Delivery and Potency of Chemotherapeutics in Melanoma Treatment via Magnetite Nanobioconjugates.

Diaz E, Quezada V, Cifuentes J, Arias Morales N, Reyes L, Munoz-Camargo C ACS Omega. 2024; 9(45):45402-45420.

PMID: 39554413 PMC: 11561594. DOI: 10.1021/acsomega.4c07415.


Banana fruit (Musa sp.) DNA-magnetite nanoparticles: Synthesis, characterization, and biocompatibility assays on normal and cancerous cells.

Arregui-Almeida D, Coronel M, Analuisa K, Bastidas-Caldes C, Guerrero S, Torres M PLoS One. 2024; 19(10):e0311927.

PMID: 39401205 PMC: 11472939. DOI: 10.1371/journal.pone.0311927.


Magnetic nanomagnetic nanoparticles combining with Slit2 gene and bone marrow mononuclear cells to improve cognitive dysfunction in rats with chronic cerebral ischemia.

Wang N, Lin M, Guo W, Cao Y Int J Med Sci. 2024; 21(11):2233-2243.

PMID: 39239546 PMC: 11373550. DOI: 10.7150/ijms.97051.


Macromolecular Polymer Based Complexes: A Diverse Strategy for the Delivery of Nucleotides.

Singh D Protein Pept Lett. 2024; 31(8):586-601.

PMID: 39177133 DOI: 10.2174/0109298665310091240809103048.


Assessment of CRISPRa-mediated overexpression in an Parkinson's disease model.

Guzman-Sastoque P, Sotelo S, Esmeral N, Albarracin S, Sutachan J, Reyes L Front Bioeng Biotechnol. 2024; 12:1420183.

PMID: 39175618 PMC: 11338903. DOI: 10.3389/fbioe.2024.1420183.

References
1.
Peay H, Fischer R, Tzeng J, Hesterlee S, Morris C, Martin A . Gene therapy as a potential therapeutic option for Duchenne muscular dystrophy: A qualitative preference study of patients and parents. PLoS One. 2019; 14(5):e0213649. PMC: 6493713. DOI: 10.1371/journal.pone.0213649. View

2.
Giehrl-Schwab J, Giesert F, Rauser B, Lao C, Hembach S, Lefort S . Parkinson's disease motor symptoms rescue by CRISPRa-reprogramming astrocytes into GABAergic neurons. EMBO Mol Med. 2022; 14(5):e14797. PMC: 9081909. DOI: 10.15252/emmm.202114797. View

3.
Mohammadi H, Nekobahr E, Akhtari J, Saeedi M, Akbari J, Fathi F . Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicol Rep. 2021; 8:331-336. PMC: 7892792. DOI: 10.1016/j.toxrep.2021.01.012. View

4.
Treenate P, Monvisade P . In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug. Int J Biol Macromol. 2017; 99:71-78. DOI: 10.1016/j.ijbiomac.2017.02.061. View

5.
Singh R, Kim T, Patel K, Knowles J, Kim H . Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. J Biomed Mater Res A. 2012; 100(7):1734-42. DOI: 10.1002/jbm.a.34140. View