» Articles » PMID: 37286540

All-silicon Quantum Light Source by Embedding an Atomic Emissive Center in a Nanophotonic Cavity

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Jun 7
PMID 37286540
Authors
Affiliations
Soon will be listed here.
Abstract

Silicon is the most scalable optoelectronic material but has suffered from its inability to generate directly and efficiently classical or quantum light on-chip. Scaling and integration are the most fundamental challenges facing quantum science and technology. We report an all-silicon quantum light source based on a single atomic emissive center embedded in a silicon-based nanophotonic cavity. We observe a more than 30-fold enhancement of luminescence, a near-unity atom-cavity coupling efficiency, and an 8-fold acceleration of the emission from the all-silicon quantum emissive center. Our work opens immediate avenues for large-scale integrated cavity quantum electrodynamics and quantum light-matter interfaces with applications in quantum communication and networking, sensing, imaging, and computing.

Citing Articles

Optical single-shot readout of spin qubits in silicon.

Gritsch A, Ulanowski A, Pforr J, Reiserer A Nat Commun. 2025; 16(1):64.

PMID: 39747103 PMC: 11695859. DOI: 10.1038/s41467-024-55552-9.


An overview on plasmon-enhanced photoluminescence via metallic nanoantennas.

Montano-Priede J, Zapata-Herrera M, Esteban R, Zabala N, Aizpurua J Nanophotonics. 2024; 13(26):4771-4794.

PMID: 39640204 PMC: 11614590. DOI: 10.1515/nanoph-2024-0463.


In the quest of lossless slow light at surface plasmons.

Ziyatkhan K, Orazbayev B, Valagiannopoulos C Sci Rep. 2024; 14(1):29191.

PMID: 39587178 PMC: 11589595. DOI: 10.1038/s41598-024-78231-7.


All-Epitaxial Self-Assembly of Silicon Color Centers Confined Within Sub-Nanometer Thin Layers Using Ultra-Low Temperature Epitaxy.

Aberl J, Prado Navarrete E, Karaman M, Enriquez D, Wilflingseder C, Salomon A Adv Mater. 2024; 36(48):e2408424.

PMID: 39394979 PMC: 11602677. DOI: 10.1002/adma.202408424.


Indistinguishable photons from an artificial atom in silicon photonics.

Komza L, Samutpraphoot P, Odeh M, Tang Y, Mathew M, Chang J Nat Commun. 2024; 15(1):6920.

PMID: 39134534 PMC: 11319600. DOI: 10.1038/s41467-024-51265-1.


References
1.
Komza L, Samutpraphoot P, Odeh M, Tang Y, Mathew M, Chang J . Indistinguishable photons from an artificial atom in silicon photonics. Nat Commun. 2024; 15(1):6920. PMC: 11319600. DOI: 10.1038/s41467-024-51265-1. View

2.
Dowling J, Milburn G . Quantum technology: the second quantum revolution. Philos Trans A Math Phys Eng Sci. 2003; 361(1809):1655-74. DOI: 10.1098/rsta.2003.1227. View

3.
Arute F, Arya K, Babbush R, Bacon D, Bardin J, Barends R . Quantum supremacy using a programmable superconducting processor. Nature. 2019; 574(7779):505-510. DOI: 10.1038/s41586-019-1666-5. View

4.
Wan N, Lu T, Chen K, Walsh M, Trusheim M, De Santis L . Large-scale integration of artificial atoms in hybrid photonic circuits. Nature. 2020; 583(7815):226-231. DOI: 10.1038/s41586-020-2441-3. View

5.
Santiago-Cruz T, Gennaro S, Mitrofanov O, Addamane S, Reno J, Brener I . Resonant metasurfaces for generating complex quantum states. Science. 2022; 377(6609):991-995. DOI: 10.1126/science.abq8684. View