Human SAMD9 is a Poxvirus-activatable Anticodon Nuclease Inhibiting Codon-specific Protein Synthesis
Authors
Affiliations
As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNA), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNA depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNA-specific 2'--methylation at the wobble position, making virtually all eukaryotic tRNA susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.
Morales M, Zhang F, Xiang Y Methods Mol Biol. 2024; 2860:219-227.
PMID: 39621270 DOI: 10.1007/978-1-0716-4160-6_14.
Sahoo S, Erlacher M, Wlodarski M Blood. 2024; 145(5):475-485.
PMID: 39475954 PMC: 11826520. DOI: 10.1182/blood.2022017717.
tRNA modifications and tRNA-derived small RNAs: new insights of tRNA in human disease.
Wu D, Li X, Khan F, Yuan C, Pandupuspitasari N, Huang C Cell Biol Toxicol. 2024; 40(1):76.
PMID: 39276283 PMC: 11401796. DOI: 10.1007/s10565-024-09919-9.
A virally encoded tRNA neutralizes the PARIS antiviral defence system.
Burman N, Belukhina S, Depardieu F, Wilkinson R, Skutel M, Santiago-Frangos A Nature. 2024; 634(8033):424-431.
PMID: 39111359 PMC: 11464382. DOI: 10.1038/s41586-024-07874-3.
Legrand A, Dahoui C, De La Myre Mory C, Noy K, Guiguettaz L, Versapuech M PLoS Biol. 2024; 22(7):e3002696.
PMID: 38959200 PMC: 11221667. DOI: 10.1371/journal.pbio.3002696.