» Articles » PMID: 37273411

Joint Estimation of Metal Density and Attenuation Maps with Pencil Beam XFET

Overview
Publisher IEEE
Date 2023 Jun 5
PMID 37273411
Authors
Affiliations
Soon will be listed here.
Abstract

X-ray fluorescence emission tomography (XFET) is an emerging imaging modality that images the spatial distribution of metal without requiring biochemical modification or radioactivity. This work investigates the joint estimation of metal and attenuation maps with a pencil-beam XFET system that allows for direct metal measurement in the absence of attenuation. Using singular value decomposition on a simplified imaging model, we show that reconstructing metal and attenuation voxels far from the detector is an ill-conditioned problem. Using simulated data, we develop and compare two image reconstruction methods for joint estimation. The first method alternates between updating the attenuation map with a separable paraboloidal surrogates algorithm and updating the metal map with a closed-form solution. The second method performs simultaneous joint estimation with conjugate gradients based on a linearized imaging model. The alternating approach outperforms the linearized approach for iron and gold numerical phantom reconstructions. Reconstructing an (8 cm) object containing gold concentrations of 5 mg/cm and an unknown beam attenuation map using the alternating approach yields an accurate gold map (NRMSE = 0.19) and attenuation map (NRMSE = 0.14). This simulation demonstrates an accurate joint reconstruction of metal and attenuation maps, from emission data, without previous knowledge of any attenuation map.

Citing Articles

Contrast-to-noise ratio comparison between X-ray fluorescence emission tomography and computed tomography.

DeBrosse H, Jadick G, Meng L, La Riviere P J Med Imaging (Bellingham). 2024; 11(Suppl 1):S12808.

PMID: 39417084 PMC: 11478016. DOI: 10.1117/1.JMI.11.S1.S12808.


Effect of detector placement on joint estimation in X-ray fluorescence emission tomography.

DeBrosse H, Meng L, La Riviere P IEEE Trans Radiat Plasma Med Sci. 2024; 8(1):21-32.

PMID: 39069988 PMC: 11281267. DOI: 10.1109/trpms.2023.3332288.


A High-Sensitivity Benchtop X-Ray Fluorescence Emission Tomography (XFET) System With a Full-Ring of X-Ray Imaging-Spectrometers and a Compound-Eye Collimation Aperture.

Mandot S, Zannoni E, Cai L, Nie X, La Riviere P, Wilson M IEEE Trans Med Imaging. 2024; 43(5):1782-1791.

PMID: 38696285 PMC: 11129545. DOI: 10.1109/TMI.2023.3348791.

References
1.
Dunning C, Bazalova-Carter M . Sheet beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticles. Med Phys. 2018; 45(6):2572-2582. DOI: 10.1002/mp.12893. View

2.
Dorsey J, Sun L, Joh D, Witztum A, Kao G, Alonso-Basanta M . Gold nanoparticles in radiation research: potential applications for imaging and radiosensitization. Transl Cancer Res. 2014; 2(4):280-291. PMC: 4241969. DOI: 10.3978/j.issn.2218-676X.2013.08.09. View

3.
Yan Y, Zeng G . Attenuation map estimation with SPECT emission data only. Int J Imaging Syst Technol. 2010; 19(3):271. PMC: 2818122. DOI: 10.1002/ima.20200. View

4.
Berker Y, Kiessling F, Schulz V . Scattered PET data for attenuation-map reconstruction in PET/MRI. Med Phys. 2014; 41(10):102502. DOI: 10.1118/1.4894818. View

5.
Shi J, Granger B, Xu K, Yang Y . Quantitative X-ray fluorescence imaging of gold nanoparticles using joint L1 and total variation regularized reconstruction. Quant Imaging Med Surg. 2020; 10(1):184-196. PMC: 6960426. DOI: 10.21037/qims.2019.10.15. View