Atri A, Rouhani M, Mirjafary Z
Sci Rep. 2025; 15(1):7043.
PMID: 40016548
PMC: 11868596.
DOI: 10.1038/s41598-025-91459-1.
Ramsden C, Oziminski W
ACS Omega. 2025; 10(5):4978-4986.
PMID: 39959048
PMC: 11822512.
DOI: 10.1021/acsomega.4c10544.
Phang S, Zhang Z, Wu C, Wong Z, Su M, So C
Chem Sci. 2025; 16(10):4512-4518.
PMID: 39926705
PMC: 11803951.
DOI: 10.1039/d4sc05867d.
Lombana A, Chaunchaiyakul S, Chuzel O, Hagebaum-Reignier D, Parrain J, Bocquet F
Chem Sci. 2025; 16(7):3198-3210.
PMID: 39840291
PMC: 11744327.
DOI: 10.1039/d4sc07550a.
Vitek M, Deng J, Anderson H, Roncevic I
ACS Nano. 2025; 19(1):1405-1411.
PMID: 39810377
PMC: 11752501.
DOI: 10.1021/acsnano.4c14100.
More π, please: What drives the formation of unsaturated molecules in the interstellar medium?.
Londono-Restrepo J, Gomez S, Quitian-Lara H, Fantuzzi F, Restrepo A
Chem Sci. 2025; 16(7):3051-3065.
PMID: 39802688
PMC: 11718301.
DOI: 10.1039/d4sc07986h.
Stacked-ring aromaticity from the viewpoint of the effective number of π-electrons.
Sugimori R, Okada K, Kishi R, Kitagawa Y
Chem Sci. 2025; 16(4):1707-1715.
PMID: 39759931
PMC: 11694183.
DOI: 10.1039/d4sc07123a.
Magnetically Induced Current-Density Susceptibility of Circum[]coronenes.
Wang Q, Taubert S, Sundholm D
J Phys Chem A. 2025; 129(2):527-535.
PMID: 39754591
PMC: 11744783.
DOI: 10.1021/acs.jpca.4c07293.
Reversible formation of tetraphenylpentalene, a room temperature stable antiaromatic hydrocarbon.
Sanderson H, Helbig A, Kociok-Kohn G, Helten H, Hintermair U
Chem Sci. 2024; 16(2):952-961.
PMID: 39660293
PMC: 11627289.
DOI: 10.1039/d4sc06439a.
Aromaticity and Chirality: New Facets of Old Concepts.
Shainyan B
Molecules. 2024; 29(22).
PMID: 39598783
PMC: 11596870.
DOI: 10.3390/molecules29225394.
Antiaromaticity in molecular assemblies and materials.
Lavendomme R, Yamashina M
Chem Sci. 2024; .
PMID: 39512924
PMC: 11537289.
DOI: 10.1039/d4sc05318d.
Revisiting a classic carbocation - DFT, coupled-cluster, and molecular dynamics computations on barbaralyl cation formation and rearrangements.
Guo W, Kong W, Tantillo D
Chem Sci. 2024; .
PMID: 39268206
PMC: 11385376.
DOI: 10.1039/d4sc04829f.
Prediction of the ground state for indenofluorene-type systems with Clar's π-sextet model.
George G, Stasyuk A, Sola M
Chem Sci. 2024; 15(34):13676-13687.
PMID: 39211490
PMC: 11351611.
DOI: 10.1039/d4sc03465a.
Redox-Switchable Aromaticity in a Helically Extended Indeno[2,1-]fluorene.
Sidler E, Hein R, Doellerer D, Feringa B
J Am Chem Soc. 2024; 146(28):19168-19176.
PMID: 38954739
PMC: 11258684.
DOI: 10.1021/jacs.4c04191.
The application of aromaticity and antiaromaticity to reaction mechanisms.
Zhu Q, Chen S, Chen D, Lin L, Xiao K, Zhao L
Fundam Res. 2024; 3(6):926-938.
PMID: 38933008
PMC: 11197727.
DOI: 10.1016/j.fmre.2023.04.004.
Controlling Electronic Coherences and the Curvature Induced by the Derivative Coupling at a Conical Intersection: A Quantum Ehrenfest (QuEh) Protocol for Reaction Path Following Application to "Channel 3" Benzene Photochemistry.
Worth G, Robb M
J Phys Chem A. 2024; 128(27):5408-5415.
PMID: 38917388
PMC: 11247493.
DOI: 10.1021/acs.jpca.4c02449.
On the aromaticity of actinide compounds.
Badri Z, Foroutan-Nejad C
Nat Rev Chem. 2024; 8(7):551-560.
PMID: 38907002
DOI: 10.1038/s41570-024-00617-y.
Conversion of Methane at Room Temperature Mediated by the Ta-Ta σ-Bond.
Li Q, Liu Q, Zhao Y, He S
JACS Au. 2024; 4(5):1824-1832.
PMID: 38818048
PMC: 11134373.
DOI: 10.1021/jacsau.4c00032.
Multiconfigurational actinide nitrides assisted by double Möbius aromaticity.
Lin X, Lu X, Tang S, Wu W, Mo Y
Chem Sci. 2024; 15(21):8216-8226.
PMID: 38817572
PMC: 11134321.
DOI: 10.1039/d4sc01549e.
Revisiting Hafner's Azapentalenes: The Chemistry of 1,3-Bis(dimethylamino)-2-azapentalene.
Meiszter E, Gazdag T, Mayer P, Kunfi A, Holczbauer T, Sulyok-Eiler M
J Org Chem. 2024; 89(9):5941-5951.
PMID: 38630009
PMC: 11077492.
DOI: 10.1021/acs.joc.3c02564.