» Articles » PMID: 37249040

Robust Quantitative Susceptibility Mapping Via Approximate Message Passing with Parameter Estimation

Overview
Journal Magn Reson Med
Publisher Wiley
Specialty Radiology
Date 2023 May 30
PMID 37249040
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: For quantitative susceptibility mapping (QSM), the lack of ground-truth in clinical settings makes it challenging to determine suitable parameters for the dipole inversion. We propose a probabilistic Bayesian approach for QSM with built-in parameter estimation, and incorporate the nonlinear formulation of the dipole inversion to achieve a robust recovery of the susceptibility maps.

Theory: From a Bayesian perspective, the image wavelet coefficients are approximately sparse and modeled by the Laplace distribution. The measurement noise is modeled by a Gaussian-mixture distribution with two components, where the second component is used to model the noise outliers. Through probabilistic inference, the susceptibility map and distribution parameters can be jointly recovered using approximate message passing (AMP).

Methods: We compare our proposed AMP with built-in parameter estimation (AMP-PE) to the state-of-the-art L1-QSM, FANSI, and MEDI approaches on the simulated and in vivo datasets, and perform experiments to explore the optimal settings of AMP-PE. Reproducible code is available at: https://github.com/EmoryCN2L/QSM_AMP_PE.

Results: On the simulated Sim2Snr1 dataset, AMP-PE achieved the lowest NRMSE, deviation from calcification moment and the highest SSIM, while MEDI achieved the lowest high-frequency error norm. On the in vivo datasets, AMP-PE is robust and successfully recovers the susceptibility maps using the estimated parameters, whereas L1-QSM, FANSI and MEDI typically require additional visual fine-tuning to select or double-check working parameters.

Conclusion: AMP-PE provides automatic and adaptive parameter estimation for QSM and avoids the subjectivity from the visual fine-tuning step, making it an excellent choice for the clinical setting.

Citing Articles

Accelerated model-based T1, T2* and proton density mapping using a Bayesian approach with automatic hyperparameter estimation.

Huang S, Lah J, Allen J, Qiu D Magn Reson Med. 2024; 93(2):563-583.

PMID: 39270136 PMC: 11604832. DOI: 10.1002/mrm.30295.


R-Mixup: Riemannian Mixup for Biological Networks.

Kan X, Li Z, Cui H, Yu Y, Xu R, Yu S KDD. 2024; 2023:1073-1085.

PMID: 38343707 PMC: 10853987. DOI: 10.1145/3580305.3599483.

References
1.
Betts M, Acosta-Cabronero J, Cardenas-Blanco A, Nestor P, Duzel E . High-resolution characterisation of the aging brain using simultaneous quantitative susceptibility mapping (QSM) and R2* measurements at 7T. Neuroimage. 2016; 138:43-63. DOI: 10.1016/j.neuroimage.2016.05.024. View

2.
Abdul-Rahman H, Gdeisat M, Burton D, Lalor M, Lilley F, Moore C . Fast and robust three-dimensional best path phase unwrapping algorithm. Appl Opt. 2007; 46(26):6623-35. DOI: 10.1364/ao.46.006623. View

3.
Wang Y, Liu T . Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2014; 73(1):82-101. PMC: 4297605. DOI: 10.1002/mrm.25358. View

4.
Karsa A, Punwani S, Shmueli K . An optimized and highly repeatable MRI acquisition and processing pipeline for quantitative susceptibility mapping in the head-and-neck region. Magn Reson Med. 2020; 84(6):3206-3222. DOI: 10.1002/mrm.28377. View

5.
Yang A, Zhou Z, Balasubramanian A, Sastry S, Ma Y . Fast l₁-minimization algorithms for robust face recognition. IEEE Trans Image Process. 2013; 22(8):3234-46. DOI: 10.1109/TIP.2013.2262292. View