221S-1a Inhibits Endothelial Proliferation in Pathological Angiogenesis Through ERK/c-Myc Signaling
Overview
Authors
Affiliations
Pathological angiogenesis plays a major role in many disease processes, including cancer and diabetic retinopathy. Antiangiogenic therapy is a potential management for pathologic angiogenesis. The novel synthetic compound 221S-1a, derived from captopril, tanshinol and borneol, may have antiangiogenic properties. On the basis of MS, NMR and HPLC analysis, the structure of 221S-1a was identified. The cellular uptake and metabolism of this compound was also observed. Next, the antiangiogenic properties of 221S-1a were evaluated in tumor-xenograft and OIR models in vivo. The inhibitory properties of 221S-1a on endothelial cell proliferation, migration, tube formation and sprouting were detected in vitro. Furthermore, 221S-1a induced G1/S phase arrest was detected by PI staining flow cytometry analysis and Cyclin D, Cyclin E expression. 221S-1a inhibited ERK1/2 activation and nuclear translocation, in addition to downregulation of c-Myc, a transcription factor that regulates cell cycle progression. Molecular docking indicated the interaction of 221S-1a with the ATP-binding site of ERK2, leading to the inhibition of ERK2 phosphorylation and a concomitant inhibition of ERK1 phosphorylation. In conclusion, 221S-1a inhibited the G1/S phase transition by blocking the ERK1/2/c-Myc pathway to reduce tumor and OIR retinal angiogenesis. These novel findings suggest that 221S-1a is a potential pharmacologic candidate for treating pathological angiogenesis.
Research progress of exosomes in the angiogenesis of digestive system tumour.
Liu Y, Wu H, Sang Y, Chong W, Shang L, Li L Discov Oncol. 2024; 15(1):33.
PMID: 38341827 PMC: 10859358. DOI: 10.1007/s12672-024-00879-4.