» Articles » PMID: 37239914

Comprehensive Analysis of Microbiome, Metabolome, and Transcriptome Revealed the Mechanisms of Intestinal Injury in Rainbow Trout Under Heat Stress

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2023 May 27
PMID 37239914
Authors
Affiliations
Soon will be listed here.
Abstract

Global warming is one of the most common environmental challenges faced by cold-water fish farming. Intestinal barrier function, gut microbiota, and gut microbial metabolites are significantly altered under heat stress, posing serious obstacles to the healthy artificial culture of rainbow trout. However, the molecular mechanisms underlying intestinal injury in rainbow trout under heat stress remain unclear. In the present study, the optimal growth temperature for rainbow trout (16 °C) was used for the control group, and the maximum temperature tolerated by rainbow trout (24 °C) was used for the heat stress group, which was subjected to heat stress for 21 days. The mechanism of intestinal injury in rainbow trout under heat stress was explored by combining animal histology, 16S rRNA gene amplicon sequencing, ultra-high performance liquid chromatography-mass spectrometry, and transcriptome sequencing. The results showed that the antioxidant capacity of rainbow trout was enhanced under heat stress, the levels of stress-related hormones were significantly increased, and the relative expression of genes related to heat stress proteins was significantly increased, indicating that the heat stress model of rainbow trout was successfully established. Secondly, the intestinal tract of rainbow trout showed inflammatory pathological characteristics under heat stress, with increased permeability, activation of the inflammatory factor signaling pathway, and increased relative expression of inflammatory factor genes, suggesting that the intestinal barrier function was impaired. Thirdly, heat stress caused an imbalance of intestinal commensal microbiota and changes in intestinal metabolites in rainbow trout, which participated in the stress response mainly by affecting lipid metabolism and amino acid metabolism. Finally, heat stress promoted intestinal injury in rainbow trout by activating the peroxisome proliferator-activated receptor-α signaling pathway. These results not only expand the understanding of fish stress physiology and regulation mechanisms, but also provide a scientific basis for healthy artificial culture and the reduction of rainbow trout production costs.

Citing Articles

Transcriptomic Insights into Dual Temperature-Salinity Stress Response in "Shuike No. 1", a Pioneering Rainbow Trout Strain Bred in China.

Liu X, Wang G, Huang T, Liu E, Gu W, Fan P Biology (Basel). 2025; 14(1).

PMID: 39857280 PMC: 11761190. DOI: 10.3390/biology14010049.


Ribosome Profiling and RNA Sequencing Reveal Translation and Transcription Regulation under Acute Heat Stress in Rainbow Trout (, , ) Liver.

Zhao G, Liu Z, Quan J, Lu J, Li L, Pan Y Int J Mol Sci. 2024; 25(16).

PMID: 39201531 PMC: 11354268. DOI: 10.3390/ijms25168848.

References
1.
Ulrich-Lai Y, Herman J . Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009; 10(6):397-409. PMC: 4240627. DOI: 10.1038/nrn2647. View

2.
Hsu Y, Chen S, Lee W, Lin S, Kao M, Tsao W . Mitochondrial alterations of skeletal muscle in a heat stress rat model. Proc Natl Sci Counc Repub China B. 1995; 19(4):233-9. View

3.
Alfonso S, Gesto M, Sadoul B . Temperature increase and its effects on fish stress physiology in the context of global warming. J Fish Biol. 2020; 98(6):1496-1508. DOI: 10.1111/jfb.14599. View

4.
Pearce S, Mani V, Weber T, Rhoads R, Patience J, Baumgard L . Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs. J Anim Sci. 2013; 91(11):5183-93. DOI: 10.2527/jas.2013-6759. View

5.
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X . The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci. 2020; 247:117443. DOI: 10.1016/j.lfs.2020.117443. View