» Articles » PMID: 37234902

Scalable Hybrid Deep Neural Networks/polarizable Potentials Biomolecular Simulations Including Long-range Effects

Overview
Journal Chem Sci
Specialty Chemistry
Date 2023 May 26
PMID 37234902
Authors
Affiliations
Soon will be listed here.
Abstract

Deep-HP is a scalable extension of the Tinker-HP multi-GPU molecular dynamics (MD) package enabling the use of Pytorch/TensorFlow Deep Neural Network (DNN) models. Deep-HP increases DNNs' MD capabilities by orders of magnitude offering access to ns simulations for 100k-atom biosystems while offering the possibility of coupling DNNs to any classical (FFs) and many-body polarizable (PFFs) force fields. It allows therefore the introduction of the ANI-2X/AMOEBA hybrid polarizable potential designed for ligand binding studies where solvent-solvent and solvent-solute interactions are computed with the AMOEBA PFF while solute-solute ones are computed by the ANI-2X DNN. ANI-2X/AMOEBA explicitly includes AMOEBA's physical long-range interactions an efficient Particle Mesh Ewald implementation while preserving ANI-2X's solute short-range quantum mechanical accuracy. The DNN/PFF partition can be user-defined allowing for hybrid simulations to include key ingredients of biosimulation such as polarizable solvents, polarizable counter ions, … ANI-2X/AMOEBA is accelerated using a multiple-timestep strategy focusing on the model's contributions to low-frequency modes of nuclear forces. It primarily evaluates AMOEBA forces while including ANI-2X ones only correction-steps resulting in an order of magnitude acceleration over standard Velocity Verlet integration. Simulating more than 10 μs, we compute charged/uncharged ligand solvation free energies in 4 solvents, and absolute binding free energies of host-guest complexes from SAMPL challenges. ANI-2X/AMOEBA average errors are discussed in terms of statistical uncertainty and appear in the range of chemical accuracy compared to experiment. The availability of the Deep-HP computational platform opens the path towards large-scale hybrid DNN simulations, at force-field cost, in biophysics and drug discovery.

Citing Articles

Incorporating Neural Networks into the AMOEBA Polarizable Force Field.

Wang Y, Inizan T, Liu C, Piquemal J, Ren P J Phys Chem B. 2024; 128(10):2381-2388.

PMID: 38445577 PMC: 10985787. DOI: 10.1021/acs.jpcb.3c08166.


From Organic Fragments to Photoswitchable Catalysts: The OFF-ON Structural Repository for Transferable Kernel-Based Potentials.

Celerse F, Wodrich M, Vela S, Gallarati S, Fabregat R, Juraskova V J Chem Inf Model. 2024; 64(4):1201-1212.

PMID: 38319296 PMC: 10900300. DOI: 10.1021/acs.jcim.3c01953.


Force-field-enhanced neural network interactions: from local equivariant embedding to atom-in-molecule properties and long-range effects.

Ple T, Lagardere L, Piquemal J Chem Sci. 2023; 14(44):12554-12569.

PMID: 38020379 PMC: 10646944. DOI: 10.1039/d3sc02581k.


Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions.

Illarionov A, Sakipov S, Pereyaslavets L, Kurnikov I, Kamath G, Butin O J Am Chem Soc. 2023; 145(43):23620-23629.

PMID: 37856313 PMC: 10623557. DOI: 10.1021/jacs.3c07628.


Machine Learning Interatomic Potentials and Long-Range Physics.

Anstine D, Isayev O J Phys Chem A. 2023; 127(11):2417-2431.

PMID: 36802360 PMC: 10041642. DOI: 10.1021/acs.jpca.2c06778.


References
1.
Monticelli L, Tieleman D . Force fields for classical molecular dynamics. Methods Mol Biol. 2012; 924:197-213. DOI: 10.1007/978-1-62703-017-5_8. View

2.
Kobayashi C, Jung J, Matsunaga Y, Mori T, Ando T, Tamura K . GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms. J Comput Chem. 2017; 38(25):2193-2206. DOI: 10.1002/jcc.24874. View

3.
Shi Y, Laury M, Wang Z, Ponder J . AMOEBA binding free energies for the SAMPL7 TrimerTrip host-guest challenge. J Comput Aided Mol Des. 2020; 35(1):79-93. PMC: 7867568. DOI: 10.1007/s10822-020-00358-2. View

4.
Liberatore E, Meli R, Rothlisberger U . A Versatile Multiple Time Step Scheme for Efficient ab Initio Molecular Dynamics Simulations. J Chem Theory Comput. 2018; 14(6):2834-2842. DOI: 10.1021/acs.jctc.7b01189. View

5.
Leimkuhler B, Matthews C . Robust and efficient configurational molecular sampling via Langevin dynamics. J Chem Phys. 2013; 138(17):174102. DOI: 10.1063/1.4802990. View