» Articles » PMID: 37233020

Mechanical and Physical Properties of an Experimental Chemically and Green-Nano Improved Dental Alginate After Proven Antimicrobial Potentials

Overview
Journal Gels
Date 2023 May 26
PMID 37233020
Authors
Affiliations
Soon will be listed here.
Abstract

Objectives: Impression materials could be a source of cross-contamination due to the presence of microorganisms from blood and saliva inside the oral cavity. Nevertheless, routinely performed post-setting disinfection could compromise the dimensional accuracy and other mechanical properties of alginates. Thus, this study aimed to evaluate detail reproduction, dimensional accuracy, tear strength, and elastic recovery of new experimentally prepared self-disinfecting dental alginates.

Methods: Two antimicrobial-modified dental alginate groups were prepared by mixing alginate powder with 0.2% silver nitrate (AgNO group) and a 0.2% chlorohexidine solution (CHX group) instead of pure water. Moreover, a third modified group was examined by the extraction of () oleoresin using water. The extract was used to reduce silver nitrate to form silver nanoparticles (AgNPs), and the mixture was used as well in dental alginate preparation ( + AgNP group). Dimensional accuracy and detail reproduction were examined as per the ISO 1563 standard guidelines. Specimens were prepared using a metallic mold engraved with three parallel vertical lines 20, 50, and 75 µm wide. Detail reproduction was evaluated by checking the reproducibility of the 50 µm line using a light microscope. Dimensional accuracy was assessed by measuring the change in length between defined reference points. Elastic recovery was measured according to ISO 1563:1990, in which specimens were gradually loaded and then the load was released to allow for recovery from the deformation. Tear strength was evaluated using a material testing machine until failure at a crosshead speed of 500 mm/min.

Results: The recorded dimensional changes between all tested groups were insignificantly different and within the reported acceptable values (between 0.037-0.067 mm). For tear strength, there were statistically significant differences between all tested groups. Groups modified with CHX (1.17 ± 0.26 N/mm) and + AgNPs (1.11 ± 0.24 N/mm) showed higher tear strength values compared to the control (0.86 ± 0.23 N/mm) but were insignificant from AgNO (0.94 ± 0.17 N/mm). All tested groups showed elastic recovery values that met both the ISO standard and ADA specifications for elastic impression materials and tear strength values within the acceptable documented ranges.

Discussion: The CHX, silver nitrate, and green-synthesized silver nanoparticles could be promising, inexpensive alternatives for the preparation of a self-disinfecting alginate impression material without affecting its performance. Green synthesis of metal nanoparticles could be a very safe, efficient, and nontoxic method, with the advantage of having a synergistic effect between metal ions and active chemical constituents of plant extracts.

Citing Articles

Assessing the impact of an environmentally friendly approach on irreversible dental hydrocolloid performance.

Beuter L, Bourauel C, Singer L Sci Rep. 2024; 14(1):30516.

PMID: 39681606 PMC: 11649782. DOI: 10.1038/s41598-024-83035-w.


Evaluation of two different self-disinfection alginate impression material.

Bendary I, Omar A, Goda R, Ali A, Lotfy K, Shohayeb M BDJ Open. 2024; 10(1):84.

PMID: 39500873 PMC: 11538259. DOI: 10.1038/s41405-024-00269-6.


Study on the effect of chlorogenic acid on the antimicrobial effect, physical properties and model accuracy of alginate impression materials.

Jiang S, Chen F, Hu Q, Yang F, Hu N, Luo X PeerJ. 2024; 12:e18228.

PMID: 39494305 PMC: 11531742. DOI: 10.7717/peerj.18228.


Biological properties of experimental dental alginate modified for self-disinfection using green nanotechnology.

Singer L, Karacic S, Szekat C, Bierbaum G, Bourauel C Clin Oral Investig. 2023; 27(11):6677-6688.

PMID: 37775587 PMC: 10630233. DOI: 10.1007/s00784-023-05277-8.

References
1.
Rosen M, Touyz L . Influence of mixing disinfectant solutions into alginate on working time and accuracy. J Dent. 1991; 19(3):186-8. DOI: 10.1016/0300-5712(91)90014-p. View

2.
Singer L, Karacic S, Szekat C, Bierbaum G, Bourauel C . Biological properties of experimental dental alginate modified for self-disinfection using green nanotechnology. Clin Oral Investig. 2023; 27(11):6677-6688. PMC: 10630233. DOI: 10.1007/s00784-023-05277-8. View

3.
Jones M, Newcombe R, Bellis H, Bottomley J . The dimensional stability of self-disinfecting alginate impressions compared to various immersion regimes. Angle Orthod. 1990; 60(2):123-8. DOI: 10.1043/0003-3219(1990)060<0123:TDSOSA>2.0.CO;2. View

4.
Guiraldo R, Borsato T, Berger S, Lopes M, Gonini Jr A, Sinhoreti M . Surface detail reproduction and dimensional accuracy of stone models: influence of disinfectant solutions and alginate impression materials. Braz Dent J. 2012; 23(4):417-21. DOI: 10.1590/s0103-64402012000400018. View

5.
Omidkhoda M, Hasanzadeh N, Soleimani F, Shafaee H . Antimicrobial and physical properties of alginate impression material incorporated with silver nanoparticles. Dent Res J (Isfahan). 2019; 16(6):372-376. PMC: 6873245. View