» Articles » PMID: 37206138

Signal Attenuation-compensated Projection-resolved OCT Angiography

Overview
Specialty Radiology
Date 2023 May 19
PMID 37206138
Authors
Affiliations
Soon will be listed here.
Abstract

Projection artifacts are a significant limitation of optical coherence tomographic angiography (OCTA). Existing techniques to suppress these artifacts are sensitive to image quality, becoming less reliable on low-quality images. In this study, we propose a novel signal attenuation-compensated projection-resolved OCTA (sacPR-OCTA) algorithm. In addition to removing projection artifacts, our method compensates for shadows beneath large vessels. The proposed sacPR-OCTA algorithm improves vascular continuity, reduces the similarity of vascular patterns in different plexuses, and removes more residual artifacts compared to existing methods. In addition, the sacPR-OCTA algorithm better preserves flow signal in choroidal neovascular lesions and shadow-affected areas. Because sacPR-OCTA processes the data along normalized A-lines, it provides a general solution for removing projection artifacts agnostic to the platform.

Citing Articles

Optical attenuation coefficient decorrelation-based optical coherence tomography angiography for microvascular evaluation of Alzheimer's disease on mice.

Xiang B, Ding N, Jiang H, Liu J, Yu Y, Luan J Neurophotonics. 2025; 12(1):015013.

PMID: 40078532 PMC: 11899147. DOI: 10.1117/1.NPh.12.1.015013.


Artificial Intelligence Versus Rules-Based Approach for Segmenting NonPerfusion Area in a DRCR Retina Network Optical Coherence Tomography Angiography Dataset.

Hormel T, Beaulieu W, Wang J, Sun J, Jia Y Invest Ophthalmol Vis Sci. 2025; 66(3):22.

PMID: 40062815 PMC: 11905605. DOI: 10.1167/iovs.66.3.22.


Advances in OCT Angiography.

Hormel T, Huang D, Jia Y Transl Vis Sci Technol. 2025; 14(3):6.

PMID: 40052848 PMC: 11905608. DOI: 10.1167/tvst.14.3.6.


Slab-Specific Projection-Resolved Optical Coherence Tomography Angiography for Enhancing En Face Polyp Detection in Polypoidal Choroidal Vasculopathy.

Wongchaisuwat N, Wang J, Hormel T, Jia Y, White E, Rodanant N Invest Ophthalmol Vis Sci. 2025; 66(1):9.

PMID: 39760687 PMC: 11717135. DOI: 10.1167/iovs.66.1.9.


Visualizing features with wide-field volumetric OCT angiography.

Hormel T, Liang G, Wei X, Guo Y, Gao M, Wang J Opt Express. 2024; 32(6):10329-10347.

PMID: 38571248 PMC: 11018334. DOI: 10.1364/OE.510640.


References
1.
Hwang T, Gao S, Liu L, Lauer A, Bailey S, Flaxel C . Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. JAMA Ophthalmol. 2016; 134(4):367-73. PMC: 4978127. DOI: 10.1001/jamaophthalmol.2015.5658. View

2.
Gao S, Jia Y, Liu L, Zhang M, Takusagawa H, Morrison J . Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016; 57(10):4485-92. PMC: 5015963. DOI: 10.1167/iovs.16-20080. View

3.
Corvi F, Cozzi M, Barbolini E, Nizza D, Belotti M, Staurenghi G . COMPARISON BETWEEN SEVERAL OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY DEVICES AND INDOCYANINE GREEN ANGIOGRAPHY OF CHOROIDAL NEOVASCULARIZATION. Retina. 2019; 40(5):873-880. DOI: 10.1097/IAE.0000000000002471. View

4.
An L, Wang R . In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express. 2008; 16(15):11438-52. DOI: 10.1364/oe.16.011438. View

5.
Stanga P, Lim J, Hamilton P . Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update. Ophthalmology. 2003; 110(1):15-21; quiz 22-3. DOI: 10.1016/s0161-6420(02)01563-4. View