» Articles » PMID: 37202199

[A Semi-supervised Material Quantitative Intelligent Imaging Algorithm for Spectral CT Based on Prior Information Perception Learning]

Overview
Specialty General Medicine
Date 2023 May 18
PMID 37202199
Authors
Affiliations
Soon will be listed here.
Abstract

Objective: To propose a semi-supervised material quantitative intelligent imaging algorithm based on prior information perception learning (SLMD-Net) to improve the quality and precision of spectral CT imaging.

Methods: The algorithm includes a supervised and a self- supervised submodule. In the supervised submodule, the mapping relationship between low and high signal-to-noise ratio (SNR) data was constructed through mean square error loss function learning based on a small labeled dataset. In the self- supervised sub-module, an image recovery model was utilized to construct the loss function incorporating the prior information from a large unlabeled low SNR basic material image dataset, and the total variation (TV) model was used to to characterize the prior information of the images. The two submodules were combined to form the SLMD-Net method, and pre-clinical simulation data were used to validate the feasibility and effectiveness of the algorithm.

Results: Compared with the traditional model-driven quantitative imaging methods (FBP-DI, PWLS-PCG, and E3DTV), data-driven supervised-learning-based quantitative imaging methods (SUMD-Net and BFCNN), a material quantitative imaging method based on unsupervised learning (UNTV-Net) and semi-supervised learning-based cycle consistent generative adversarial network (Semi-CycleGAN), the proposed SLMD-Net method had better performance in both visual and quantitative assessments. For quantitative imaging of water and bone materials, the SLMD-Net method had the highest PSNR index (31.82 and 29.06), the highest FSIM index (0.95 and 0.90), and the lowest RMSE index (0.03 and 0.02), respectively) and achieved significantly higher image quality scores than the other 7 material decomposition methods (P < 0.05). The material quantitative imaging performance of SLMD-Net was close to that of the supervised network SUMD-Net trained with labeled data with a doubled size.

Conclusions: A small labeled dataset and a large unlabeled low SNR material image dataset can be fully used to suppress noise amplification and artifacts in basic material decomposition in spectral CT and reduce the dependence on labeled data-driven network, which considers more realistic scenario in clinics.

Citing Articles

MISD-IR: material-image subspace decomposition-based iterative reconstruction with spectrum estimation for dual-energy computed tomography.

Ren J, Wang Y, Cai A, Wang S, Liang N, Li L Quant Imaging Med Surg. 2024; 14(6):4155-4176.

PMID: 38846275 PMC: 11151249. DOI: 10.21037/qims-23-1681.

References
1.
Zhang L, Zhang L, Mou X, Zhang D . FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process. 2011; 20(8):2378-86. DOI: 10.1109/TIP.2011.2109730. View

2.
Marcus R, Fletcher J, Ferrero A, Leng S, Halaweish A, Gutjahr R . Detection and Characterization of Renal Stones by Using Photon-Counting-based CT. Radiology. 2018; 289(2):436-442. PMC: 6204218. DOI: 10.1148/radiol.2018180126. View

3.
Mabu S, Miyake M, Kuremoto T, Kido S . Semi-supervised CycleGAN for domain transformation of chest CT images and its application to opacity classification of diffuse lung diseases. Int J Comput Assist Radiol Surg. 2021; 16(11):1925-1935. PMC: 8522550. DOI: 10.1007/s11548-021-02490-2. View

4.
Li Z, Long Y, Chun I . An improved iterative neural network for high-quality image-domain material decomposition in dual-energy CT. Med Phys. 2022; 50(4):2195-2211. DOI: 10.1002/mp.15817. View

5.
Dong X, Niu T, Zhu L . Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization. Med Phys. 2014; 41(5):051909. DOI: 10.1118/1.4870375. View