6.
Gu W, Meng F, Haag R, Zhong Z
. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J Control Release. 2020; 329:676-695.
DOI: 10.1016/j.jconrel.2020.10.003.
View
7.
Nguyen P, Herve-Aubert K, Chourpa I, Allard-Vannier E
. Active targeting strategy in nanomedicines using anti-EGFR ligands - A promising approach for cancer therapy and diagnosis. Int J Pharm. 2021; 609:121134.
DOI: 10.1016/j.ijpharm.2021.121134.
View
8.
Chou T
. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010; 70(2):440-6.
DOI: 10.1158/0008-5472.CAN-09-1947.
View
9.
Kim B, Rutka J, Chan W
. Nanomedicine. N Engl J Med. 2010; 363(25):2434-43.
DOI: 10.1056/NEJMra0912273.
View
10.
Haidar I, Harding I, Bowater I, Eldridge D, Charman W
. The role of lecithin degradation on the pH dependent stability of halofantrine encapsulated fat nano-emulsions. Int J Pharm. 2017; 528(1-2):524-535.
DOI: 10.1016/j.ijpharm.2017.06.040.
View
11.
Wilson B, Patterson M
. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008; 53(9):R61-109.
DOI: 10.1088/0031-9155/53/9/R01.
View
12.
Li Z, Huang J, Wu J
. pH-Sensitive nanogels for drug delivery in cancer therapy. Biomater Sci. 2020; 9(3):574-589.
DOI: 10.1039/d0bm01729a.
View
13.
Thotakura N, Panjeta A, Negi P, Preet S, Raza K
. Doxorubicin-Loaded Mixed Micelles for the Effective Management of Skin Carcinoma: In Vivo Anti-Tumor Activity and Biodistribution Studies. AAPS PharmSciTech. 2021; 22(3):130.
DOI: 10.1208/s12249-021-01993-0.
View
14.
Kuklenyik Z, Jones J, Gardner M, Schieltz D, Parks B, Toth C
. Core lipid, surface lipid and apolipoprotein composition analysis of lipoprotein particles as a function of particle size in one workflow integrating asymmetric flow field-flow fractionation and liquid chromatography-tandem mass spectrometry. PLoS One. 2018; 13(4):e0194797.
PMC: 5892890.
DOI: 10.1371/journal.pone.0194797.
View
15.
Kim J, Yoon I, Cho H, Kim D, Choi Y, Kim D
. Emulsion-based colloidal nanosystems for oral delivery of doxorubicin: improved intestinal paracellular absorption and alleviated cardiotoxicity. Int J Pharm. 2014; 464(1-2):117-26.
DOI: 10.1016/j.ijpharm.2014.01.016.
View
16.
Huang Y, Balasubramanian T, Yang E, Luo D, Diers J, Bocian D
. Stable synthetic bacteriochlorins for photodynamic therapy: role of dicyano peripheral groups, central metal substitution (2H, Zn, Pd), and Cremophor EL delivery. ChemMedChem. 2012; 7(12):2155-67.
PMC: 3519240.
DOI: 10.1002/cmdc.201200351.
View
17.
Zacharis C, Vastardi E
. Application of analytical quality by design principles for the determination of alkyl p-toluenesulfonates impurities in Aprepitant by HPLC. Validation using total-error concept. J Pharm Biomed Anal. 2017; 150:152-161.
DOI: 10.1016/j.jpba.2017.12.009.
View
18.
El Zaafarany G, Awad G, Holayel S, Mortada N
. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010; 397(1-2):164-72.
DOI: 10.1016/j.ijpharm.2010.06.034.
View
19.
El Maghraby G, Williams A, Barry B
. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int J Pharm. 2004; 276(1-2):143-61.
DOI: 10.1016/j.ijpharm.2004.02.024.
View
20.
Zoubari G, Staufenbiel S, Volz P, Alexiev U, Bodmeier R
. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur J Pharm Biopharm. 2016; 110:39-46.
DOI: 10.1016/j.ejpb.2016.10.021.
View