6.
Li H, Wang C, Xiao W, Yang Y, Hu P, Dai Y
. Dissecting the effect of polyethylene glycol on the enzymatic hydrolysis of diverse lignocellulose. Int J Biol Macromol. 2019; 131:676-681.
DOI: 10.1016/j.ijbiomac.2019.03.131.
View
7.
Lou H, Wang M, Lai H, Lin X, Zhou M, Yang D
. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate. Bioresour Technol. 2013; 146:478-484.
DOI: 10.1016/j.biortech.2013.07.115.
View
8.
Li Y, Yang D, Lu S, Lao S, Qiu X
. Modified Lignin with Anionic Surfactant and Its Application in Controlled Release of Avermectin. J Agric Food Chem. 2018; 66(13):3457-3464.
DOI: 10.1021/acs.jafc.8b00393.
View
9.
Teng X, Xu H, Song W, Shi J, Xin J, Hiscox W
. Preparation and Properties of Hydrogels Based on PEGylated Lignosulfonate Amine. ACS Omega. 2019; 2(1):251-259.
PMC: 6641139.
DOI: 10.1021/acsomega.6b00296.
View
10.
Sanchez-Munoz S, Balbino T, de Oliveira F, Rocha T, Barbosa F, Velez-Mercado M
. Surfactants, Biosurfactants, and Non-Catalytic Proteins as Key Molecules to Enhance Enzymatic Hydrolysis of Lignocellulosic Biomass. Molecules. 2022; 27(23).
PMC: 9739445.
DOI: 10.3390/molecules27238180.
View
11.
Zhang H, Fan M, Li X, Zhang A, Xie J
. Enhancing enzymatic hydrolysis of sugarcane bagasse by ferric chloride catalyzed organosolv pretreatment and Tween 80. Bioresour Technol. 2018; 258:295-301.
DOI: 10.1016/j.biortech.2018.03.004.
View
12.
Wang Z, Zhu J, Fu Y, Qin M, Shao Z, Jiang J
. Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin. Biotechnol Biofuels. 2013; 6(1):156.
PMC: 3843589.
DOI: 10.1186/1754-6834-6-156.
View
13.
Wang W, Zhu Y, Du J, Yang Y, Jin Y
. Influence of lignin addition on the enzymatic digestibility of pretreated lignocellulosic biomasses. Bioresour Technol. 2015; 181:7-12.
DOI: 10.1016/j.biortech.2015.01.026.
View
14.
Guo H, Chang Y, Lee D
. Enzymatic saccharification of lignocellulosic biorefinery: Research focuses. Bioresour Technol. 2018; 252:198-215.
DOI: 10.1016/j.biortech.2017.12.062.
View
15.
Yuan Y, Jiang B, Chen H, Wu W, Wu S, Jin Y
. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol Biofuels. 2021; 14(1):205.
PMC: 8527784.
DOI: 10.1186/s13068-021-02054-1.
View
16.
Chen H, Liu Z
. Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng Life Sci. 2020; 17(5):489-499.
PMC: 6999485.
DOI: 10.1002/elsc.201600102.
View
17.
Sidiras D, Politi D, Giakoumakis G, Salapa I
. Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review. Bioresour Technol. 2021; 343:126158.
DOI: 10.1016/j.biortech.2021.126158.
View
18.
Liu Y, Li B, Feng Y, Cui Q
. Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnol Adv. 2020; 40:107535.
DOI: 10.1016/j.biotechadv.2020.107535.
View
19.
Du J, Song W, Zhang X, Zhao J, Liu G, Qu Y
. Differential reinforcement of enzymatic hydrolysis by adding chemicals and accessory proteins to high solid loading substrates with different pretreatments. Bioprocess Biosyst Eng. 2018; 41(8):1153-1163.
DOI: 10.1007/s00449-018-1944-x.
View
20.
Robak K, Balcerek M
. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technol Biotechnol. 2018; 56(2):174-187.
PMC: 6117988.
DOI: 10.17113/ftb.56.02.18.5428.
View