» Articles » PMID: 37159662

Quantitative Chemometric Phenotyping of Three-dimensional Liver Organoids by Raman Spectral Imaging

Abstract

Confocal Raman spectral imaging (RSI) enables high-content, label-free visualization of a wide range of molecules in biological specimens without sample preparation. However, reliable quantification of the deconvoluted spectra is needed. Here we develop an integrated bioanalytical methodology, qRamanomics, to qualify RSI as a tissue phantom calibrated tool for quantitative spatial chemotyping of major classes of biomolecules. Next, we apply qRamanomics to fixed 3D liver organoids generated from stem-cell-derived or primary hepatocytes to assess specimen variation and maturity. We then demonstrate the utility of qRamanomics for identifying biomolecular response signatures from a panel of liver-altering drugs, probing drug-induced compositional changes in 3D organoids followed by monitoring of drug metabolism and accumulation. Quantitative chemometric phenotyping constitutes an important step in developing quantitative label-free interrogation of 3D biological specimens.

Citing Articles

Correlative Quantitative Raman Chemical Imaging and MCR-ALS in Mouse NASH Model Reveals Direct Relationships between Diet and Resultant Liver Pathology.

Hobro A, Sakaguchi T, Akira S, Smith N Chem Biomed Imaging. 2024; 2(8):577-583.

PMID: 39473991 PMC: 11504623. DOI: 10.1021/cbmi.4c00027.


Tunable Hybrid Hydrogels of Alginate and Cell-Derived dECM to Study the Impact of Matrix Alterations on Epithelial-to-Mesenchymal Transition.

Barros da Silva P, Zhao X, Bidarra S, Nascimento D, LaLone V, Lourenco B Adv Healthc Mater. 2024; 13(29):e2401032.

PMID: 39246099 PMC: 11582509. DOI: 10.1002/adhm.202401032.


An FDA-Validated, Self-Cleaning Liquid Chromatography-Mass Spectrometry System for Determining Small-Molecule Drugs and Metabolites in Organoid/Organ-on-Chip Medium.

Kogler S, Pedersen G, Martinez-Ramirez F, Aizenshtadt A, Busek M, Krauss S Anal Chem. 2024; 96(29):12129-12138.

PMID: 38985547 PMC: 11270525. DOI: 10.1021/acs.analchem.4c02246.


SERSomes for metabolic phenotyping and prostate cancer diagnosis.

Bi X, Wang J, Xue B, He C, Liu F, Chen H Cell Rep Med. 2024; 5(6):101579.

PMID: 38776910 PMC: 11228451. DOI: 10.1016/j.xcrm.2024.101579.


Innovative Approaches for Drug Discovery: Quantifying Drug Distribution and Response with Raman Imaging.

Dunnington E, Wong B, Fu D Anal Chem. 2024; 96(20):7926-7944.

PMID: 38625100 PMC: 11108735. DOI: 10.1021/acs.analchem.4c01413.


References
1.
Hu Q, Zhao H, Ouyang S . Understanding water structure from Raman spectra of isotopic substitution HO/DO up to 573 K. Phys Chem Chem Phys. 2017; 19(32):21540-21547. DOI: 10.1039/c7cp02065a. View

2.
Szalowska E, van der Burg B, Man H, Hendriksen P, Peijnenburg A . Model steatogenic compounds (amiodarone, valproic acid, and tetracycline) alter lipid metabolism by different mechanisms in mouse liver slices. PLoS One. 2014; 9(1):e86795. PMC: 3906077. DOI: 10.1371/journal.pone.0086795. View

3.
Zbinden A, Marzi J, Schlunder K, Probst C, Urbanczyk M, Black S . Non-invasive marker-independent high content analysis of a microphysiological human pancreas-on-a-chip model. Matrix Biol. 2019; 85-86:205-220. DOI: 10.1016/j.matbio.2019.06.008. View

4.
Hsu C, Xu J, Brinkhof B, Wang H, Cui Z, Huang W . A single-cell Raman-based platform to identify developmental stages of human pluripotent stem cell-derived neurons. Proc Natl Acad Sci U S A. 2020; 117(31):18412-18423. PMC: 7414136. DOI: 10.1073/pnas.2001906117. View

5.
Berg S, Kutra D, Kroeger T, Straehle C, Kausler B, Haubold C . ilastik: interactive machine learning for (bio)image analysis. Nat Methods. 2019; 16(12):1226-1232. DOI: 10.1038/s41592-019-0582-9. View