6.
Prakash D, Fesel C, Jain R, Cazenave P, Mishra G, Pied S
. Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India. J Infect Dis. 2006; 194(2):198-207.
DOI: 10.1086/504720.
View
7.
Mahittikorn A, Kwankaew P, Rattaprasert P, Kotepui K, Masangkay F, Kotepui M
. Elevation of serum interleukin-1β levels as a potential indicator for malarial infection and severe malaria: a meta-analysis. Malar J. 2022; 21(1):308.
PMC: 9617441.
DOI: 10.1186/s12936-022-04325-0.
View
8.
Mita-Mendoza N, van de Hoef D, Lopera-Mesa T, Doumbia S, Konate D, Doumbouya M
. A potential role for plasma uric acid in the endothelial pathology of Plasmodium falciparum malaria. PLoS One. 2013; 8(1):e54481.
PMC: 3551755.
DOI: 10.1371/journal.pone.0054481.
View
9.
Moxon C, Gibbins M, McGuinness D, Milner Jr D, Marti M
. New Insights into Malaria Pathogenesis. Annu Rev Pathol. 2019; 15:315-343.
DOI: 10.1146/annurev-pathmechdis-012419-032640.
View
10.
Lyke K, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I
. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy.... Infect Immun. 2004; 72(10):5630-7.
PMC: 517593.
DOI: 10.1128/IAI.72.10.5630-5637.2004.
View
11.
Chua C, Brown G, Hamilton J, Rogerson S, Boeuf P
. Monocytes and macrophages in malaria: protection or pathology?. Trends Parasitol. 2012; 29(1):26-34.
DOI: 10.1016/j.pt.2012.10.002.
View
12.
Ataide M, Andrade W, Zamboni D, Wang D, Souza M, Franklin B
. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014; 10(1):e1003885.
PMC: 3894209.
DOI: 10.1371/journal.ppat.1003885.
View
13.
Vogetseder A, Ospelt C, Reindl M, Schober M, Schmutzhard E
. Time course of coagulation parameters, cytokines and adhesion molecules in Plasmodium falciparum malaria. Trop Med Int Health. 2004; 9(7):767-73.
DOI: 10.1111/j.1365-3156.2004.01265.x.
View
14.
Bucsan A, Williamson K
. Setting the stage: The initial immune response to blood-stage parasites. Virulence. 2020; 11(1):88-103.
PMC: 6961725.
DOI: 10.1080/21505594.2019.1708053.
View
15.
Chua C, Ng I, Yap B, Teo A
. Factors influencing phagocytosis of malaria parasites: the story so far. Malar J. 2021; 20(1):319.
PMC: 8284020.
DOI: 10.1186/s12936-021-03849-1.
View
16.
OCarroll S, Kho D, Wiltshire R, Nelson V, Rotimi O, Johnson R
. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015; 12:131.
PMC: 4506411.
DOI: 10.1186/s12974-015-0346-0.
View
17.
Sierro F, Grau G
. The Ins and Outs of Cerebral Malaria Pathogenesis: Immunopathology, Extracellular Vesicles, Immunometabolism, and Trained Immunity. Front Immunol. 2019; 10:830.
PMC: 6478768.
DOI: 10.3389/fimmu.2019.00830.
View
18.
Armah H, Dodoo A, Wiredu E, Stiles J, Adjei A, Gyasi R
. High-level cerebellar expression of cytokines and adhesion molecules in fatal, paediatric, cerebral malaria. Ann Trop Med Parasitol. 2005; 99(7):629-47.
DOI: 10.1179/136485905X51508.
View
19.
Ty M, Zuniga M, Gotz A, Kayal S, Sahu P, Mohanty A
. Malaria inflammation by xanthine oxidase-produced reactive oxygen species. EMBO Mol Med. 2019; 11(8):e9903.
PMC: 6685105.
DOI: 10.15252/emmm.201809903.
View
20.
Ramachandran A, Sharma A
. Dissecting the mechanisms of pathogenesis in cerebral malaria. PLoS Pathog. 2022; 18(11):e1010919.
PMC: 9671333.
DOI: 10.1371/journal.ppat.1010919.
View