6.
Frias-Alvarez P, Vredenburg V, Familiar-Lopez M, Longcore J, Gonzalez-Bernal E, Santos-Barrera G
. Chytridiomycosis survey in wild and captive mexican amphibians. Ecohealth. 2008; 5(1):18-26.
DOI: 10.1007/s10393-008-0155-3.
View
7.
Grundler M, Toledo L, Parra-Olea G, Haddad C, Giasson L, Sawaya R
. Interaction between breeding habitat and elevation affects prevalence but not infection intensity of Batrachochytrium dendrobatidis in Brazilian anuran assemblages. Dis Aquat Organ. 2012; 97(3):173-84.
DOI: 10.3354/dao02413.
View
8.
Hammond T, Blackwood P, Shablin S, Richards-Zawacki C
. Relationships between glucocorticoids and infection with Batrachochytrium dendrobatidis in three amphibian species. Gen Comp Endocrinol. 2019; 285:113269.
DOI: 10.1016/j.ygcen.2019.113269.
View
9.
Hayes T, Falso P, Gallipeau S, Stice M
. The cause of global amphibian declines: a developmental endocrinologist's perspective. J Exp Biol. 2010; 213(6):921-33.
PMC: 2829317.
DOI: 10.1242/jeb.040865.
View
10.
Jacinto-Maldonado M, Garcia-Pena G, Paredes-Leon R, Saucedo B, Sarmiento-Silva R, Garcia A
. Chiggers (Acariformes: Trombiculoidea) do not increase rates of infection by fungus in the endemic Dwarf Mexican Treefrog (Anura: Hylidae). Int J Parasitol Parasites Wildl. 2020; 11:163-173.
PMC: 7031141.
DOI: 10.1016/j.ijppaw.2019.12.005.
View
11.
James T, Toledo L, Rodder D, da Silva Leite D, Belasen A, Betancourt-Roman C
. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecol Evol. 2015; 5(18):4079-97.
PMC: 4588650.
DOI: 10.1002/ece3.1672.
View
12.
Johnson M, Speare R
. Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control implications. Emerg Infect Dis. 2003; 9(8):922-5.
PMC: 3020615.
DOI: 10.3201/eid0908.030145.
View
13.
Kerby J, Richards-Hrdlicka K, Storfer A, Skelly D
. An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?. Ecol Lett. 2009; 13(1):60-7.
DOI: 10.1111/j.1461-0248.2009.01399.x.
View
14.
McCoy K, Peralta A
. Pesticides Could Alter Amphibian Skin Microbiomes and the Effects of . Front Microbiol. 2018; 9:748.
PMC: 5919957.
DOI: 10.3389/fmicb.2018.00748.
View
15.
Orton F, Tyler C
. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians?. Biol Rev Camb Philos Soc. 2014; 90(4):1100-17.
DOI: 10.1111/brv.12147.
View
16.
Rodder D, Kielgast J, Lotters S
. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change. Dis Aquat Organ. 2011; 92(2-3):201-7.
DOI: 10.3354/dao02197.
View
17.
Rollins-Smith L, Ramsey J, Pask J, Reinert L, Woodhams D
. Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr Comp Biol. 2011; 51(4):552-62.
DOI: 10.1093/icb/icr095.
View
18.
Scheele B, Pasmans F, Skerratt L, Berger L, Martel A, Beukema W
. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 2019; 363(6434):1459-1463.
DOI: 10.1126/science.aav0379.
View
19.
Schmeller D, Blooi M, Martel A, Garner T, Fisher M, Azemar F
. Microscopic aquatic predators strongly affect infection dynamics of a globally emerged pathogen. Curr Biol. 2013; 24(2):176-180.
DOI: 10.1016/j.cub.2013.11.032.
View
20.
Searle C, Gervasi S, Hua J, Hammond J, Relyea R, Olson D
. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv Biol. 2011; 25(5):965-74.
DOI: 10.1111/j.1523-1739.2011.01708.x.
View