Roth B
Biophys Rev (Melville). 2024; 2(4):041301.
PMID: 38504719
PMC: 10903405.
DOI: 10.1063/5.0059358.
Rappel W
Phys Rep. 2023; 978:1-45.
PMID: 36843637
PMC: 9949723.
DOI: 10.1016/j.physrep.2022.06.003.
Wilson D, Moehlis J
PLoS One. 2016; 11(7):e0158239.
PMID: 27391010
PMC: 4938213.
DOI: 10.1371/journal.pone.0158239.
Caldwell B, Trew M, Pertsov A
Circ Arrhythm Electrophysiol. 2015; 8(3):685-93.
PMID: 25772543
PMC: 4472493.
DOI: 10.1161/CIRCEP.114.002661.
Woods M, Uzelac I, Holcomb M, Wikswo J, Sidorov V
Biophys J. 2013; 105(2):523-32.
PMID: 23870273
PMC: 3714876.
DOI: 10.1016/j.bpj.2013.06.009.
Probing field-induced tissue polarization using transillumination fluorescent imaging.
Caldwell B, Wellner M, Mitrea B, Pertsov A, Zemlin C
Biophys J. 2010; 99(7):2058-66.
PMID: 20923639
PMC: 3042586.
DOI: 10.1016/j.bpj.2010.07.057.
Modeling the role of the coronary vasculature during external field stimulation.
Bishop M, Boyle P, Plank G, Welsh D, Vigmond E
IEEE Trans Biomed Eng. 2010; 57(10):2335-45.
PMID: 20542762
PMC: 2976591.
DOI: 10.1109/TBME.2010.2051227.
A mechanism for the upper limit of vulnerability.
Mazeh N, Roth B
Heart Rhythm. 2009; 6(3):361-7.
PMID: 19251212
PMC: 2672308.
DOI: 10.1016/j.hrthm.2008.11.010.
Spatial heterogeneity of transmembrane potential responses of single guinea-pig cardiac cells during electric field stimulation.
Sharma V, Tung L
J Physiol. 2002; 542(Pt 2):477-92.
PMID: 12122146
PMC: 2290429.
DOI: 10.1113/jphysiol.2001.013197.
Modelling induction of a rotor in cardiac muscle by perpendicular electric shocks.
Skouibine K, Wall J, Krassowska W, Trayanova N
Med Biol Eng Comput. 2002; 40(1):47-55.
PMID: 11954708
DOI: 10.1007/BF02347695.
Roles of electric field and fiber structure in cardiac electric stimulation.
Knisley S, Trayanova N, Aguel F
Biophys J. 1999; 77(3):1404-17.
PMID: 10465752
PMC: 1300429.
DOI: 10.1016/S0006-3495(99)76989-4.
Deexcitation of cardiac cells.
Pumir A, Romey G, Krinsky V
Biophys J. 1998; 74(6):2850-61.
PMID: 9635739
PMC: 1299626.
DOI: 10.1016/S0006-3495(98)77992-5.
A generalized activating function for predicting virtual electrodes in cardiac tissue.
Sobie E, Susil R, Tung L
Biophys J. 1997; 73(3):1410-23.
PMID: 9284308
PMC: 1181040.
DOI: 10.1016/S0006-3495(97)78173-6.
Mechanisms of cardiac cell excitation with premature monophasic and biphasic field stimuli: a model study.
Fishler M, Sobie E, Thakor N, Tung L
Biophys J. 1996; 70(3):1347-62.
PMID: 8785290
PMC: 1225060.
DOI: 10.1016/S0006-3495(96)79692-3.
Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation.
Wikswo Jr J, Lin S, Abbas R
Biophys J. 1995; 69(6):2195-210.
PMID: 8599628
PMC: 1236459.
DOI: 10.1016/S0006-3495(95)80115-3.
Electrical stimulation of cardiac myocytes.
Ranjan R, Thakor N
Ann Biomed Eng. 1995; 23(6):812-21.
PMID: 8572431
DOI: 10.1007/BF02584480.
Response of a single cell to an external electric field.
Krassowska W, Neu J
Biophys J. 1994; 66(6):1768-76.
PMID: 8075318
PMC: 1275903.
DOI: 10.1016/S0006-3495(94)80971-3.
Virtual electrode effects in myocardial fibers.
Knisley S, Hill B, Ideker R
Biophys J. 1994; 66(3 Pt 1):719-28.
PMID: 8011903
PMC: 1275769.
DOI: 10.1016/s0006-3495(94)80846-x.
Inclusion of junction elements in a linear cardiac model through secondary sources: application to defibrillation.
Plonsey R, Barr R
Med Biol Eng Comput. 1986; 24(2):137-44.
PMID: 3713274
DOI: 10.1007/BF02443926.
The electrical potential produced by a strand of cardiac muscle: a bidomain analysis.
Roth B
Ann Biomed Eng. 1988; 16(6):609-37.
PMID: 3228221
DOI: 10.1007/BF02368018.