6.
Kalkat M, Resetca D, Lourenco C, Chan P, Wei Y, Shiah Y
. MYC Protein Interactome Profiling Reveals Functionally Distinct Regions that Cooperate to Drive Tumorigenesis. Mol Cell. 2018; 72(5):836-848.e7.
DOI: 10.1016/j.molcel.2018.09.031.
View
7.
Zeng L, Zhou M
. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 2002; 513(1):124-8.
DOI: 10.1016/s0014-5793(01)03309-9.
View
8.
Roux K, Kim D, Burke B, May D
. BioID: A Screen for Protein-Protein Interactions. Curr Protoc Protein Sci. 2018; 91:19.23.1-19.23.15.
PMC: 6028010.
DOI: 10.1002/cpps.51.
View
9.
Malynn B, de Alboran I, OHagan R, Bronson R, Davidson L, DePinho R
. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev. 2000; 14(11):1390-9.
PMC: 316670.
View
10.
Lee V, Andrews P
. Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. J Neurosci. 1986; 6(2):514-21.
PMC: 6568536.
View
11.
Heinz S, Benner C, Spann N, Bertolino E, Lin Y, Laslo P
. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38(4):576-89.
PMC: 2898526.
DOI: 10.1016/j.molcel.2010.05.004.
View
12.
Shiota H, Barral S, Buchou T, Tan M, Coute Y, Charbonnier G
. Nut Directs p300-Dependent, Genome-Wide H4 Hyperacetylation in Male Germ Cells. Cell Rep. 2018; 24(13):3477-3487.e6.
DOI: 10.1016/j.celrep.2018.08.069.
View
13.
Alekseyenko A, Walsh E, Zee B, Pakozdi T, Hsi P, Lemieux M
. Ectopic protein interactions within BRD4-chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017; 114(21):E4184-E4192.
PMC: 5448232.
DOI: 10.1073/pnas.1702086114.
View
14.
Yu D, Liang Y, Kim C, Jaganathan A, Ji D, Han X
. Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma. Nat Commun. 2023; 14(1):378.
PMC: 9870903.
DOI: 10.1038/s41467-023-36063-5.
View
15.
Grayson A, Walsh E, Cameron M, Godec J, Ashworth T, Ambrose J
. MYC, a downstream target of BRD-NUT, is necessary and sufficient for the blockade of differentiation in NUT midline carcinoma. Oncogene. 2013; 33(13):1736-1742.
PMC: 3942361.
DOI: 10.1038/onc.2013.126.
View
16.
Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M
. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev. 2001; 15(16):2042-7.
PMC: 312761.
DOI: 10.1101/gad.907901.
View
17.
Mustachio L, Roszik J, Farria A, Dent S
. Targeting the SAGA and ATAC Transcriptional Coactivator Complexes in MYC-Driven Cancers. Cancer Res. 2020; 80(10):1905-1911.
PMC: 7231639.
DOI: 10.1158/0008-5472.CAN-19-3652.
View
18.
Frank S, Schroeder M, Fernandez P, Taubert S, Amati B
. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 2001; 15(16):2069-82.
PMC: 312758.
DOI: 10.1101/gad.906601.
View
19.
Kotekar A, Singh A, Devaiah B
. BRD4 and MYC: power couple in transcription and disease. FEBS J. 2022; 290(20):4820-4842.
PMC: 9867786.
DOI: 10.1111/febs.16580.
View
20.
Naxerova K, Di Stefano B, Makofske J, Watson E, de Kort M, Martin T
. Integrated loss- and gain-of-function screens define a core network governing human embryonic stem cell behavior. Genes Dev. 2021; 35(21-22):1527-1547.
PMC: 8559676.
DOI: 10.1101/gad.349048.121.
View