6.
Paranjapye A, Nandymazumdar M, Browne J, Leir S, Harris A
. Krüppel-like factor 5 regulates wound repair and the innate immune response in human airway epithelial cells. J Biol Chem. 2021; 297(2):100932.
PMC: 8353497.
DOI: 10.1016/j.jbc.2021.100932.
View
7.
Yang Y, Tetreault M, Yermolina Y, Goldstein B, Katz J
. Krüppel-like factor 5 controls keratinocyte migration via the integrin-linked kinase. J Biol Chem. 2008; 283(27):18812-20.
PMC: 2441565.
DOI: 10.1074/jbc.M801384200.
View
8.
Wu Z, Zhou J, Zhang X, Zhang Z, Xie Y, Liu J
. Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nat Genet. 2021; 53(6):881-894.
PMC: 9124436.
DOI: 10.1038/s41588-021-00859-2.
View
9.
Kc K, Rothenberg M, Sherrill J
. In vitro model for studying esophageal epithelial differentiation and allergic inflammatory responses identifies keratin involvement in eosinophilic esophagitis. PLoS One. 2015; 10(6):e0127755.
PMC: 4454568.
DOI: 10.1371/journal.pone.0127755.
View
10.
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z
. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021; 2(3):100141.
PMC: 8454663.
DOI: 10.1016/j.xinn.2021.100141.
View
11.
Underwood B, Troutman T, Schwartz J
. Breaking down the complex pathophysiology of eosinophilic esophagitis. Ann Allergy Asthma Immunol. 2022; 130(1):28-39.
PMC: 10165615.
DOI: 10.1016/j.anai.2022.10.026.
View
12.
Jiang Y, Jiang Y, Li C, Zhang Y, Dakle P, Kaur H
. TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That Controls Epigenetic and Transcription Patterns in Esophageal Squamous Cell Carcinoma Cell Lines. Gastroenterology. 2020; 159(4):1311-1327.e19.
DOI: 10.1053/j.gastro.2020.06.050.
View
13.
Chen E, Tan C, Kou Y, Duan Q, Wang Z, Meirelles G
. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 14:128.
PMC: 3637064.
DOI: 10.1186/1471-2105-14-128.
View
14.
McCarthy D, Chen Y, Smyth G
. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10):4288-97.
PMC: 3378882.
DOI: 10.1093/nar/gks042.
View
15.
Ohara T, Colonna M, Stappenbeck T
. Adaptive differentiation promotes intestinal villus recovery. Dev Cell. 2022; 57(2):166-179.e6.
PMC: 9092613.
DOI: 10.1016/j.devcel.2021.12.012.
View
16.
Zappia L, Oshlack A
. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience. 2018; 7(7).
PMC: 6057528.
DOI: 10.1093/gigascience/giy083.
View
17.
Taft T, Kern E, Keefer L, Burstein D, Hirano I
. Qualitative assessment of patient-reported outcomes in adults with eosinophilic esophagitis. J Clin Gastroenterol. 2011; 45(9):769-74.
DOI: 10.1097/MCG.0b013e3182166a5a.
View
18.
Viaene A, Baert J
. Expression of cytokeratin-mRNAs in squamous-cell carcinoma and balloon-cell formation of human oesophageal epithelium. Histochem J. 1995; 27(1):69-78.
DOI: 10.1007/BF00164174.
View
19.
Syed A, Maradey-Romero C, Fass R
. The relationship between eosinophilic esophagitis and esophageal cancer. Dis Esophagus. 2018; 30(7):1-5.
DOI: 10.1093/dote/dox050.
View
20.
Hara T, Kasagi Y, Wang J, Sasaki M, Aaron B, Karami A
. CD73 Epithelial Progenitor Cells That Contribute to Homeostasis and Renewal Are Depleted in Eosinophilic Esophagitis. Cell Mol Gastroenterol Hepatol. 2022; 13(5):1449-1467.
PMC: 8957025.
DOI: 10.1016/j.jcmgh.2022.01.018.
View